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Malaria remains among the world’s deadliest diseases, and control
efforts depend critically on the availability of effective diagnostic
tools, particularly for the identification of asymptomatic infections,
which play a key role in disease persistence and may account for
most instances of transmission but often evade detection by current
screening methods. Research on humans and in animal models has
shown that infection by malaria parasites elicits changes in host
odors that influence vector attraction, suggesting that such changes
might yield robust biomarkers of infection status. Here we present
findings based on extensive collections of skin volatiles from human
populations with high rates of malaria infection in Kenya. We report
broad and consistent effects of malaria infection on human volatile
profiles, as well as significant divergence in the effects of symptom-
atic and asymptomatic infections. Furthermore, predictive models
based on machine learning algorithms reliably determined infection
status based on volatile biomarkers. Critically, our models identified
asymptomatic infections with 100% sensitivity, even in the case of
low-level infections not detectable by microscopy, far exceeding the
performance of currently available rapid diagnostic tests in this
regard. We also identified a set of individual compounds that
emerged as consistently important predictors of infection status.
These findings suggest that volatile biomarkers may have significant
potential for the development of a robust, noninvasive screening
method for detecting malaria infections under field conditions.

malaria | disease biomarkers | diagnostics | volatiles |
asymptomatic infection

In 2016, an estimated 216 million cases of malaria worldwide
resulted in approximately 445,000 deaths (1). Sub-Saharan

Africa was particularly hard hit, accounting for more than 90% of
reported malaria cases and deaths, with most fatalities among chil-
dren age <5 y (1). A key challenge for efforts to combat the spread of
malaria is the fact that populations with high rates of exposure to
Plasmodium parasites often harbor large numbers of individuals
exhibiting partial immunity, who show few or no clinical symptoms
despite being infected and capable of transmitting the parasite (2).
Because asymptomatic cases typically go undetected and untreated
(3), they constitute a hidden reservoir for the parasite that can con-
tribute to the persistence of malaria transmission within localized
populations, potentially accounting for up to 90% of onward trans-
mission by vectors (4–6). Indeed, the prevalence of asymptomatic
cases has recently been shown to have a positive correlation with
transmission rates in regions exhibiting wide variation in overall dis-
ease prevalence, including Nigeria, Senegal, Gabon, and the Ama-
zonian regions of Brazil (7). Therefore, identifying asymptomatic
malaria cases is critical to efforts to effectively target drug treatment
and other interventions to break the cycle of transmission (5, 8, 9).
Current diagnostic methods are poorly suited to large-scale

screening of populations to identify individuals harboring asymp-
tomatic infections, however (9). In particular, available screening
techniques, such as microscopy and rapid diagnostic tests (RDTs),
often fail to identify infections when parasite densities are low (4,
8), while more sensitive molecular-based methods entail the use

of time-consuming and costly analyses and thus are not used as
standard diagnostic tests. Furthermore, the recent discovery of
Plasmodium spp. parasites with gene deletions that render them
undetectable by widely used (HRP2-based) RDTs poses addi-
tional challenges for disease detection and raises broader ques-
tions about the potential evolution of diagnostic resistance (10,
11). Consequently, there is a pressing need for improved diagnostic
methods capable of rapidly and reliably identifying asymptomatic
infections under field conditions.
Volatile metabolites have been explored for diagnosis of a

range of human diseases, including tuberculosis, cystic fibrosis,
and cancer (12, 13), and there is reason to think that volatile
biomarkers might prove particularly informative in the case of
vector-borne pathogens, such as malaria, which may frequently
manipulate host odors to attract vectors (14–16). In the case of
malaria, previous work suggests that the parasite alters host odors
in ways that influence mosquito behavior, and that such effects
can occur in otherwise asymptomatic individuals. For example,
previous work in humans has reported enhanced attraction of
mosquito vectors to infected individuals that was likely mediated
by as-yet-unidentified odor cues (17–19). Working in a mouse
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model, we documented similar mosquito attraction to infected
but asymptomatic individuals and linked this behavior to charac-
teristic changes in host odor profiles (20); moreover, another re-
cent study also documented volatile changes associated with
murine malaria (21). However, the effects of malaria on human
volatiles remain largely undocumented, with small-scale clinical
human trials yielding inconsistent results due to low participant
numbers (22). Therefore, the present study aimed to characterize
changes in human volatile emissions associated with symptomatic
and asymptomatic malaria infections under field conditions to
assess their potential value as diagnostic biomarkers.

Results and Discussion
Sample Collection and Determination of Malaria Infection Status.
Between 2013 and 2016, we collected samples of skin volatiles
from more than 400 primary-school children (aged ≤12 y) at
41 schools across 21 localities within the Mbita area of western
Kenya (Fig. 1). Before sample collection, children were inter-
viewed (using a standardized questionnaire) to assess medical
history and current symptoms. Blood samples were then obtained
from each participant, and skin volatiles were collected, separately
but simultaneously, from one foot and one arm (at the elbow) for
1 h, using a portable push/pull volatile collection system. The
blood samples were used for initial assessment of infection status
via an SD Bioline Rapid Diagnostic Test (which detects malaria
specific antibodies) and parasite detection by light microscopy.
Children who tested positive were treated with artemether/
lumefantrine. Because these diagnostic methods are imprecise—
microscopy has a detection limit threshold, while RDTs have
variable accuracy depending on malaria species and frequently yield
false-positive results (11)—infection status was later definitively
confirmed via PCR-based methods, which detect the presence of
Plasmodium parasites with high sensitivity. (Additional details are
provided in Methods and SI Appendix.) Based on these analyses and
symptoms reported in the initial interview, subjects were classified
as malaria uninfected (U), malaria symptomatic (S), or malaria
infected but asymptomatic (AS). Subjects were included in our
initial analyses only if both PCR and microscopy were negative
(for U subjects) or positive (for S and AS subjects), yielding a total
of 330 participants with unambiguous classifications. However,
because this conservative approach excludes subjects harboring
malaria infections who test negative via microscopy due to low
parasite numbers—and because such individuals are important
from a diagnostic perspective—we included 66 individuals who
were positive by PCR but negative by microscopy in some sub-
sequent analyses. We refer to these subjects as submicroscopic
symptomatic (S[SUB]) or submicroscopic asymptomatic (AS[SUB]).

Analysis of Volatile Profiles. Volatile samples were analyzed by gas
chromatography-mass spectrometry. Only compounds that excee-
ded a minimum concentration threshold in ≥75% of the samples
for at least one category of infection status (U, S, or AS) were
included in our subsequent analyses. The resulting data were ex-
plored using machine learning techniques (discussed below) to
identify predictors of infection status. In subsequent discussion, the
overall dataset is treated as two independent subsets, Kenya 1 (K1)
and Kenya 2 (K2), due to differences in the chemical analyses used
(owing to a change of institution by the lead investigator during the
study and the resulting availability of more sensitive analytical
equipment). K1 comprises 95 U, 99 S, and 34 AS individuals, and
K2 comprises 39 U, 35 S, and 28 AS individuals. Volatile profiles
for the additional 66 individuals classified as malaria-negative by
microscopy but as malaria-positive by PCR (52 S[SUB] and 14
AS[SUB]) were analyzed by the methods used for K2 but are
presented separately below except where noted otherwise.
Because the chemical analytical techniques used for K2

allowed for much higher-quality analyses (due to an approximate
25-fold increase in sensitivity, as well as improved compound
separation), our analyses focus primarily on this subset of the
data; however, we discuss similarities and differences between
the two datasets where appropriate. In general, there is broad
agreement in the overall patterns revealed by the two datasets,
even though they were derived from separate sets of samples that
were analyzed on different equipment at different locations.

Volatile Profiles and Infection Status. Initial investigation of the data
via discriminant analysis of principal components (23) (DAPC)
revealed separation between the volatile profiles of malaria-
infected individuals (including both S and AS subjects) and un-
infected individuals for both foot and arm (Fig. 2). This separation
was apparent for both K1 and K2 but was more pronounced for
K2, likely reflecting the improved quality of the chemical analyses.
Incorporating symptom status in our analyses also revealed sep-
aration between the volatile profiles of S and AS individuals, as
well as between each of these groups and U individuals (Fig. 3).
Once again, this pattern was also apparent but less pronounced for
K1 (SI Appendix, Fig. S1). We also observed similar separation
of the volatile profiles of S[SUB] and AS[SUB] individuals from U
individuals (Fig. 3), suggesting that even submicroscopic malaria
infections generate a volatile signature.
The divergent effects of S and AS infections on volatile emis-

sions were also apparent when comparing changes in the levels of
individual compounds relative to those observed for U individuals
(Fig. 4 and SI Appendix, Fig. S2). In general, the effects of in-
fection status on individual compounds tended to be similar in
arm and foot samples (Pearson’s r = 0.8 for asymptomatic vs.
uninfected and 0.61 for symptomatic vs. uninfected). Emission
levels of most compounds were reduced in S individuals, with
several compounds showing strong suppression. Effects on the
emissions of AS individuals were more mixed, with some compounds
elevated and others suppressed relative to the levels observed for U
individuals. In general, the strongest suppression was observed for
compounds in S individuals and the strongest up-regulation was
seen for compounds in AS individuals. This overall pattern is
consistent with our previous observation that volatile emissions
were suppressed during the acute phase of infection by the rodent
malaria parasite Plasmodium chabaudii in a mouse model (20).

Predictive Models of Infection Status. To characterize the volatile
signatures associated with each category of infection status, we used
machine learning algorithms that develop tree-based ensemble
classification models, which aim to identify a minimal set of compounds
that correctly classify individuals. These algorithms were used to
“train”models on 70% of samples from K2, iteratively eliminating
the least important compounds (i.e., those making the smallest
contribution to accuracy) to obtain a subset resulting in the best
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Fig. 1. Volatile samples were collected from primary school children at
41 schools in western Kenya.
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model performance, which was then tested on the remaining 30%
of samples. We found that adaptive boosting (adaboost) consis-
tently provided the best predictions for our data with respect to
the key metrics of sensitivity (i.e., proportion of malaria-positive
individuals detected) and accuracy (i.e., proportion of all cases
classified correctly). Given our focus on identifying diagnostically
meaningful biomarkers of infection, our model selection empha-
sized sensitivity over accuracy (i.e., we are willing to accept a
somewhat higher rate of false-positives to maximize the pro-
portion of actual malaria cases correctly identified), and also fa-
vored models capable of generating predictions using relatively
few compounds. As noted, we are also particularly interested in
the ability to identify asymptomatic (AS and AS[SUB]) infections.
Despite the overall similar effects of infection status on arm and

foot volatiles, predictive models using foot volatiles exhibited
greater sensitivity, particularly for the detection of asymptomatic
infections. Model sensitivity and accuracy for several key com-
parisons, along with the compounds used as predictors, are pre-
sented in Table 1. Models based on foot volatiles identified AS
infections with 100% sensitivity and S infections with 91% sensi-
tivity. Furthermore, these models also identified submicroscopic
S[SUB] and AS[SUB] infections with 100% sensitivity. This perfor-
mance greatly exceeded that of our RDT screening, which failed to
identify more than one-third of AS[SUB] infections and approxi-
mately one-fourth of S[SUB] infections (SI Appendix, Table S1).
Although we observed differences in the effects of symptomatic
and asymptomatic infections on volatile profiles, we also tested the
ability of our algorithms to detect all malaria cases without regard
to symptom status and including submicroscopic infections. Here
our model was able to predict infection status with 95% sensitivity
and 77% accuracy using foot volatile compounds, or with 92%
sensitivity and 80% accuracy using arm volatiles.
Overall, the results of our predictive models suggest the presence

of volatile signatures that can reliably predict malaria infection
status and, critically, identify AS malaria infections with high sensi-
tivity, even in the case of incipient or otherwise low-level infections.

Selected Key Compounds. Chemical identities for all the com-
pounds included in our analyses are presented in Table 2. To
illuminate key compounds with potential diagnostic significance,
we focused on those that were consistently found to be important
predictors of infection status by our machine learning algorithm
(adaboost) (24). As noted above, models based on foot volatiles

generally exhibited the best predictive performance. For general
prediction of malaria infection status (without regard to symp-
tom status), the five most important foot volatiles for model
accuracy were compound 17 (4-hydroxy-4-methylpentan-2-one),
compound 49 (unidentified), compound 31 (unidentified), com-
pound 61 (nonanal), and compound 5 (toluene) (Table 1). These
five compounds also frequently appeared as important predictors
across other comparisons. For example, each was an important
predictor for models predicting both AS vs. U and S vs. U on the
basis of either foot or arm volatiles (or both) (Table 1).
Compound 56 (2-ethylhexan-1-ol) also frequently appeared as

an important predictor for both asymptomatic and symptomatic
infections and was the top predictor for overall infection status
for arm volatiles (Table 1), while compound 20 (ethylbenzene)
consistently appeared as an important predictor of submicro-
scopic infections. Compound 14 (ethylcyclohexane) appeared as
a predictor in some models and, along with compound 38
(propylcyclohexane), exhibited an interesting pattern in which its
emission exhibited relatively strong up-regulation in AS individ-
uals and relatively strong suppression in S individuals (Fig. 4).

K2-Arm K2-Foot

K2-Arm K2-Foot

Fig. 3. Group separation using DAPC for K2 arm and foot volatiles. (Top)
Differences among uninfected individuals and individuals with symptomatic
and asymptomatic malaria infections, confirmed by both microscopy and
PCR. (Bottom) Differences among uninfected individuals and individuals
with submicroscopic symptomatic and asymptomatic infections, detected
only by PCR. Points represent individual samples, with colors denoting
malaria condition and inclusion of 95% inertia ellipses.
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Finally, compound 9 (hexanal), which also appeared as a predictor
in some models, exhibited relatively strong suppression in both S
and AS individuals, particularly in foot volatile profiles (Fig. 4).
Two of the compounds discussed above, toluene and hexanal,

are notable in that they have previously been reported to be
produced by Plasmodium parasites in vitro (25, 26). In addition,
hexanal, ethylbenzene, 2-ethylhexan-1-ol, and nonanal have
previously been shown to elicit electrophysiological responses in
mosquitoes (27–29) (SI Appendix, Table S3). We previously
suggested that parasite-induced changes in host odors that have
relevance for vector behavior might provide reliable biomarkers
for disease diagnosis (20), raising the possibility of overlap be-
tween compounds that are predictive of infection status and
those that influence vector behavior. A search of the existing
literature suggests that mosquito responses have been examined
for relatively few of the compounds mentioned above (SI Ap-
pendix, Table S3); however, we plan to explore the influence of
relevant changes in the emissions of these and other compounds
on vector behavior in a future study.

Origins and Emission Patterns of Key Compounds. Although some
of the compounds discussed above can occur as environmental
contaminants (e.g., toluene, 4-hydroxy-4-methylpentan-2-one,
and 2-ethylhexan-1-ol) (30, 31), all of the identified compounds
highlighted here have either been previously reported from human
volatile collections or have known mechanisms of natural pro-
duction from humans or potentially human-associated microbes
(SI Appendix, Table S4). Compounds originating from human-
associated microbiota are of significant diagnostic interest, par-
ticularly with respect to the identification of volatile biomarkers,
and previous work in a mouse model has documented the effects
of malaria infection on the microbiome (32, 33). Furthermore, one
of the most consistently important predictors in our models,
compound 5 (toluene)—which may be produced by Clostridium in
the human microbiome (34)—has previously been explored as a
diagnostic biomarker for cancer in humans (35).
To confirm that the key compounds discussed above (and

highlighted in Table 2) are directly affected by infection status and
exclude potential biases (e.g., due to spatiotemporal coincidence
of environmental contamination and high rates of infection), we
further explored how emission levels of these compounds varied
between uninfected and infected individuals across individual
sample collection sessions. Linear analysis via two-way ANOVA
revealed significant variation in compound levels across collection
sessions (SI Appendix, Table S5), as expected given that volatile
emissions are labile and highly responsive to environmental con-
ditions (36). However, these analyses also revealed a highly sig-
nificant effect of infection status (S + AS vs. U) for all of our key
compounds except compound 61 (nonanal) (SI Appendix, Table
S5). There was also a significant interaction effect between col-
lection session and infection status (SI Appendix, Table S5), which
might be explained if, for example, infection influences the re-
sponsiveness of emissions to other environmental influences;
however, this interaction effect does not obscure the effects of
disease status. These analyses confirm that malaria infection af-
fects the emissions of our key predictors even when accounting for
environmental variation across collection sessions.

Conclusions
Our results show that malaria infection causes broad and con-
sistent changes in human volatile emissions. Furthermore, we
found consistent differences in the effects of symptomatic and
asymptomatic infection on human volatile profiles. These changes
in volatile profiles create a signature of infection that can be used
to reliably predict the infection status of human subjects. Criti-
cally, these volatile signatures can identify asymptomatic infections
with high sensitivity, even in the case of low-level infections not
detectable by microscopy—a key finding given the pressing need
for more effective diagnostic methods capable of detecting asymp-
tomatic carriers of infection (4, 5, 8, 9). Indeed, our predictive
models performed significantly better than RDT, and as well as
PCR, in detecting submicroscopic infections. It is also important to
note that this performance was achieved based on the analysis of
volatile samples collected under field conditions and despite con-
siderable variation introduced through sampling that took place
over 3 y and across a number of different localities, as well as by the
presence of multiple Plasmodium species and a high prevalence of
mixed parasite infections in our study population. Finally, our
analyses highlight a number of key compounds that consistently
appear as important predictors of infection across our predictive
models and thus warrant further exploration as biomarkers with
potential for the development of robust, noninvasive volatile-based
diagnostics for malaria infection.

Methods
Sample Collection.
Participant selection. Participant exclusion criteria included (i) receipt of anti-
malarial medication during the previous 2 wk; (ii) chronic disease, such as HIV;
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Fig. 4. (Top) Heatmap showing the fold-change of individual compounds in
asymptomatic and symptomatic individuals relative to those in uninfected
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(iii) not signing (or having a parent sign) the consent form; and (iv) refusal of
malaria treatment.
Ethical approval. This studywas approvedby The Pennsylvania StateUniversity (IRB
#41529), ETH Zürich (EK2015-N-59), and the Kenya Medical Research Institute
(SERU 391). Before sample collection, the study and consent form were explained
to parents/guardians and their written informed consent was obtained.
Malaria infection status. Infection status was initially assessed by RDT (SD Bioline)
and light microscopy. Three blood spots were collected on filter paper for later
confirmation of infection status by nested PCR (37), which also provided infor-
mation about Plasmodium species. The species present were P. falciparum,
P. ovale, and P. malariae; the majority of children presented with mixed infec-
tions, most often including P. falciparum. Recent symptoms (and other aspects of
medical history) were assessed in an initial interview using a standardized ques-
tionnaire. Symptoms indicative of malaria included fever, abdominal pain, rash,
diarrhea, vomiting, and body aches. Children found to be positive for malaria by
RDT were started on a 3-d regimen of artemether/lumefantrine after confirma-
tion by light microscopy. Additional information is provided in SI Appendix.
Volatile collections. Volatiles were collected (prior to treatment of infected in-
dividuals) simultaneously for 1 h from one arm (wrist to above the elbow) and
one foot (to above the ankle), using a portable system (PVAS22; Volatile Assay

Systems). Teflon sleeves for arms and bags for feet (American Durafilm), were
closed with Velcro strips. Carbon-filtered air was pushed through an entry port
(feet: 1.8 L/min; arms: 1.1 L/min) and pulled through an exit port (feet: 1.1 L/min;
arms: 0.8 L/min), where volatiles were collected on HayeSep adsorbant polymer
filters (80/100 mesh; Millipore Sigma). The volume of air collected was taken
into account in subsequent analyses.

Chemical Analyses.
Sample preparation. Each sample was eluted by adding 150 μL of dichloro-
methane (HPLC grade) and flushing with a gentle stream of nitrogen gas. p-
Bromofluorobenzene (99%; Millipore Sigma) was added as an internal
standard at a final concentration of 6 ng/μL.
Compound quantification and identification by GC-MS.Data subset K1was analyzed on
anAgilent 5973mass spectrometer coupled toa 6890gas chromatograph, a setup
capable of identifying a signal-to-noise ratio of 60:1. K2 was analyzed on an
Agilent MSD 5977A mass spectrometer coupled to a 7890B gas chromatograph,
capable of identifying a signal-to-noise ratio of 1,500:1. The analyses for K2 were
therefore approximately 25-fold more sensitive than those available for K1;
furthermore, differences in instrument configuration (resulting in a lower flow
rate for K2) led to much better separation of individual compounds in K2. For
analysis of K2, compounds from a 2.5-μL injection were separated on an Agilent
HP-5 ms capillary column (30 m × 0.25 mm i.d. × 0.1 μm film thickness), using the
following temperature program: 35 °C for 0.5 min then raised at 7 °C/min to
270 °C and a constant flow rate of 0.9 mL/min of helium. Compounds were
detected with an electron impact single quadrupole mass spectrometer (70 eV;
ion source 230 °C; quadrupole 150 °C; mass scan range, 30–350 amu). This system
allows simultaneous analysis with a flame ionization detector; however, flame
ionization-based quantification was not possible due to multiple coeluting
compounds. Details of the chemical analysis of K1 are provided in SI Appendix.

Chemical datawere processedusing theMassHunter software suite (Agilent). An
initial list of 186 compounds was generated using an automated tool in Mass-
Hunter’s quantitative analysis package, with peak identification requirements of
an absolute area of 500 counts, a signal intensity of 500 counts, and a signal-to-
noise ratio of 2. A single sample was used to generate the initial list of compounds,
and additional compounds encountered were added to the list. Each compound
was assigned a characteristic ion; if multiple compounds were assigned the same
ion and retention time (0.05-min window), the duplicate was removed. Initial
identification of selected compounds was carried out using MassHunter’s qualita-
tive analysis package and the NIST14 chemical library. Compounds of interest, as
determined by statistical analysis, were further verified by comparison with ex-
ternal standards (Sigma Aldrich and TCI Deutschland) (SI Appendix, Table S2).

Analyses of Volatile Profiles.
Datasets and compound exclusion. As noted above, K1 and K2 were analyzed on
different equipment at different locations. Furthermore, samples for K1 and
K2 were collected during different periods and from only partially overlapping
geographical locations. Consequently, K1 andK2were treated separately in our
analyses. Foot and arm volatiles were also analyzed separately. Compounds
were excluded if not found above a set concentration (0.04 ng/μL relative to the
internal standard) in at least 75% of the samples for at least one category of
infection status (AS, S, or U). The K1 dataset comprised 95 U, 101 S, and 34 AS
individuals (Fig. 2), and the K2 dataset comprised 39 U, 35 S, 29 AS, 53 S[SUB],
and 14 AS[SUB] individuals (Figs. 2–4).

Table 2. Compound IDs and selected key compounds

Compound no. Compound ID

C-5 toluene
C-8 octane
C-9 hexanal
C-12 2,4-dimethylheptane
C-14 ethylcyclohexane
C-15 2,4-dimethylhept-1-ene
C-17 4-hydroxy-4-methylpentan-2-one
C-20 ethylbenzene
C-22 m-xylene or p-xylene
C-27 o-xylene
C-31 Unidentified
C-38 propylcyclohexane
C-43 1-ethyl-3-methylbenzene
C-44 benzaldehyde
C-49 Unidentified
C-50 1,2,4-trimethylbenzene
C-51 decane
C-52 octanal
C-55 s(-)-limonene
C-56 2-ethylhexan-1-ol
C-61 nonanal
C-62 dodecane

Boldface text indicates key compounds that were consistently important
predictors in our models and/or exhibited notable emission patterns (as
discussed in the text).

Table 1. Key predictors of infection status

S vs. U AS vs. U S[sub] vs. U AS[sub] vs. U Infected (all) vs. U

Foot Arm Foot Arm Foot Arm Foot Arm Foot Arm

Sensitivity, % 91 89 100 75 100 80 100 100 (90) 95 92
Accuracy, % 85 89 78 78 100 88 100 100 (92) 77 80

Top predictors C-49 C-56 C-43 C-49 C-5 C-5 C-5 C-5 C-17 C-56
C-9 C-5 C-56 C-56 C-20 C-20 C-17 C-20 C-49 C-61
C-5 C-22 C-61 C-31 C-17 C-15 C-20 C-52 C-31 C-5
C-43 C-17 C-5 C-20 C-14 C-52 C-9 C-8 C-61 C-51
C-17 C-52 C-49 C-14 C-56 C-5 C-31

C-31 C-62
C-17 C-15
C-44 C-31

For each comparison, compounds are listed in order of importance for the predictive model. Compound IDs are provided in Table 2. Numbers in
parentheses show model sensitivity/accuracy when using only the top four predictors.
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DAPC. DAPC (23) was used to visualize differences among malaria status
groups based on discriminant functions. This method maximizes differences
between groups while minimizing variation within clusters. It uses principal
component analysis to transform the data into uncorrelated variables before
discriminant analysis. Additional details are provided in SI Appendix.
Heat maps and volcano plots. Heat maps and volcano plots were constructed to
visualize differences in the volatile emissions of malaria-infected individuals (S and
AS) relative to those of uninfected individuals (U). These visualizations compare the
mean of individual compounds in foot and arm samples from infected individuals
to the corresponding mean for uninfected samples and display the results as fold
change. In addition, compounds that differ significantly (P < 0.05) between
asymptomatic or symptomatic relative to uninfected individuals are highlighted in
the volcano plots. A Pearson correlation coefficient was computed between arm
and foot samples to compare the consistency of changes across infection status.
Predictive models. The variable selection process focused on selecting an optimal
classification model with high sensitivity and accuracy, while identifying the
minimal number of compounds needed for effective prediction. We partitioned
K2 into a training set and a test set using 70% and 30% of the K2 data, re-
spectively. Using the training set, we trained three machine learning classifi-
cation algorithms—random forest (rf) (38), regularized random forest (rrf) (39),
and adaptive boosting (adaboost) (24)—using a recursive feature elimination
algorithm implemented with the rfe function in the R caret package (40) with
inner resampling using a 10-fold cross-validation to tune the classification
model at each iteration. These algorithms use all compounds included in the
data analyses to fit an initial model on the training set, with each compound
ranked according to its importance in successfully categorizing malaria status.
The resulting model is iteratively reduced, removing the least important com-
pound each round until a subset resulting in the best accuracy is determined.

This subset of compounds is then used to generate the final model on the test
set. Because we found that adaboost consistently produced the greatest accu-
racy and sensitivity in detecting malaria cases across all categories in the test set,
this algorithm was used for all models presented in the paper. Parameters
(adaboost: mfinal and maxdepth; rrf: mtry; rf: mtry) were tuned away from
their default parameter settings, and the values that resulted in the most ac-
curate models were used to train the final versions of the models reported.
Each model produced a list of compounds required to obtain a given accuracy
and sensitivity on the test set. To test whether models could predict infection
status using fewer compounds, we used the top 5 or 10 predictors from each
model as the basis for a newmodel, resulting in new accuracy and sensitivity for
the simplified model (Table 1). Additional details are provided in SI Appendix.
Linear analysis. Further linear analysis was used to obtain the statistical significance
of the compounds selected in the predictivemodel step.Weused the function lmFit
from the R package limma (41) to run individual t tests on each compound. To refer
to a result as “statistically significant,” we used a P value <0.05 and a fold-change
of 1 higher or lower than the base of comparison. To further explore the date
effect or selected compounds, we performed a two-way ANOVA in the R package
ARTool (42), with infection status (AS + S vs. U) or (S vs. U) and collection date as
the main effects. All collections on a given date took place at a single location.

All data analysis and further visualizationweredone in in R version 3.3.3 (43).
Additional details of the statistical analyses are provided in SI Appendix.
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