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Background: Plasmodium falciparum resistance to artemisinin-based combination

therapies (ACTs) is a threat to malaria elimination. ACT-resistance in Asia raises concerns

for emergence of resistance in Africa. While most data show high efficacy of ACT

regimens in Africa, there have been reports describing declining efficacy, as measured

by both clinical failure and prolonged parasite clearance times.

Methods: Three hundred children aged 2–10 years with uncomplicated P. falciparum

infection were enrolled in Kenya and Tanzania after receiving treatment with artemether-

lumefantrine. Blood samples were taken at 0, 24, 48, and 72 h, and weekly thereafter until

28 days post-treatment. Parasite and host genetics were assessed, as well as clinical,

behavioral, and environmental characteristics, and host anti-malarial serologic response.

Results: While there was a broad range of clearance rates at both sites,

85% and 96% of Kenyan and Tanzanian samples, respectively, were qPCR-

positive but microscopy-negative at 72 h post-treatment. A greater complexity of

infection (COI) was negatively associated with qPCR-detectable parasitemia at

72 h (OR: 0.70, 95% CI: 0.53–0.94), and a greater baseline parasitemia was

marginally associated with qPCR-detectable parasitemia (1,000 parasites/uL change,

OR: 1.02, 95% CI: 1.01–1.03). Demographic, serological, and host genotyping

characteristics showed no association with qPCR-detectable parasitemia at 72 h.

Parasite haplotype-specific clearance slopes were grouped around the mean with

no association detected between specific haplotypes and slower clearance rates.
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Conclusions: Identifying risk factors for slow clearing P. falciparum infections, such as

COI, are essential for ongoing surveillance of ACT treatment failure in Kenya, Tanzania,

and more broadly in sub-Saharan Africa.

Keywords: Plasmodium, artemisinin, parasite clearance, Kenya, Tanzania, P. falciparum, artemisinin combination

therapy

INTRODUCTION

Plasmodium falciparum resistance to first-line antimalarials
remains a major threat to global malaria elimination efforts.
Currently, artemisinin combination therapies (ACTs) are the
cornerstone of antimalarial chemotherapy and are considered the
first-line treatment option for uncomplicated malaria worldwide
(1). Plasmodium falciparum resistance to ACTs is defined by a
delayed clearance phenotype in which parasites are cleared from
the bloodstream at a slower rate than expected, as measured by
microscopy positivity 3 days (72 h) after treatment initiation or
by a prolonged parasite clearance half-life (2, 3). Drug-resistant
parasites can heighten the duration, density, and infectivity of
gametocytes to mosquitoes (4) and continue to be detrimental
to human health through recrudescent infection and intensified
parasite transmission.

The delayed clearance phenotype was first reported on the
Cambodia/Thai border (5), and subsequently associated with
the discovery of novel variants in a kelch gene on chromosome
13 (K13 mutations) (6). Plasmodium falciparum has evolved
resistance to nearly every antimalarial drug in use (7, 8), and
a pressing concern is that resistance to ACTs will spread to or
independently evolve in sub-Saharan Africa, where the majority
of the world’s malaria deaths occur. Clinical trial data remain
mixed; most trials testing the efficacy of ACTs across the African
continent have shown no evidence of treatment failure (9–12),
yet a small number of recent studies have reported efficacies
below 90% (13, 14). Recent data around prolonged microscopic
parasite clearance and the R561H K13 mutation in Rwanda, and
the emergence of resistance in Uganda are of particular concern
(15, 16). Additionally, several studies have reported reduced
treatment efficacy to lumefantrine in vitro, a common partner
drug choice for ACTs (17). Because of the potential for emerging
resistance, the WHO recommends regular studies to assess the
therapeutic efficacy of ACTs, including in vitro studies of parasite
susceptibility to antimalarials in culture and frequent in vivo
measurements of parasite clearance in representative patient
populations (1). Slow clearance has rarely been observed through
use of microscopy in Africa (18), however, molecular evidence
of persistent infection has been frequently reported (19, 20). The
clinical importance of persistence by qPCR remains unclear due
to concerns that this may represent circulation of parasite DNA
rather than true infection, but recent evidence has linked it to
clinical failure (21).

Abbreviations: ACT, artemisinin-based combination therapy; AL, artemether-
lumefantrine; AMA1, Apical Membrane Antigen 1; KE, Kenya; MFI, median
fluorescence intensity; MSP1, Merozoite Surface Protein 1; OR, odds ratio; TZ,
Tanzania; WHO, World Health Organization.

There is evidence that there may be a broad range of
parasite clearance rates among African patients likely driven
by genetic diversity and greater complexity of infection (22).
Such variation in clearance may complicate efforts to disentangle
the effects of K13 or other mutations on ACT resistance.
Host factors, from genetic to environmental characteristics,
may also impact parasite clearance. Results from Southeast
Asia and Kenya suggest a role of the host immune system
in slow clearers (23, 24). Host genotype may also play a role
in parasite clearance despite the presence of drug resistant
parasite genotypes (25). Other factors, such as socioeconomic
status, risk of malaria infections, and other environmental factors
may also contribute to clearance times in ways we do not
understand (26–28). Shedding light on risk factors for slow-
clearing infection is critical to prepare for the onset of full-fledged
ACT resistance.

Finally, transmission dynamic differences in sub-Saharan
Africa may make ACT resistance manifest differently than in
Southeast Asia. Sub-Saharan Africa comprises relatively high
transmission areas compared to Southeast Asia, and therefore
individuals are often infected with polyclonal infections made up
of more than one genetically distinct parasite strain. Within-host
dynamics could play a role in how ACT resistant parasites are
maintained and selected for over the course of treatment (29–
31); these are nuances that are currently masked when measuring
clearance curves using parasitemia estimated by methods such as
qPCR (32).

It is critical that parasite clearance rates with ACT regimens
are assessed routinely across malaria endemic settings. Our
objective was to determine the variation in ACT clearance
over 72 h among parasite clones found in children with acute
uncomplicated P. falciparum malaria from Kenya and Tanzania,
and to assess risk factors for prolonged parasite clearance
times. Participants were followed longitudinally, at 0, 24, 48,
and 72 h after administration of artemether-lumefantrine (AL),
and subsequently weekly for 28 days. Kenya and Tanzania
are countries in which persistence of parasitemia at 72 h is
common (19, 20), and we make use of a novel framework
for detecting artemisinin susceptibility in vivo that can detect
low frequency resistant parasites in humans. We also describe
risk factors associated with slower clearance rates, including
host, environmental, and parasite genetic factors, and show
that parasite clearance rates appear to be primarily driven by
parasite genetics rather than other clinical characteristics. Early
detection, surveillance, and containment are all critical to inform
the potential for artemisinin resistance emergence in Africa and
to identify the genetic and ecological mechanisms which could
enhance spread.
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MATERIALS AND METHODS

Study Population
One hundred and fifty children aged 2–10 years who presented
with acute uncomplicated P. falciparum malaria infection were
enrolled in an observational study at each of two sites:
Ahero, KisumuDistrict, Kenya, and Yombo/Fukayosi, Bagamoyo
District, Tanzania, between September 2016 and July 2018. At
screening, participants completed a clinical, behavioral, and
environmental questionnairemeasuring characteristics including
age, sex, previous malaria episodes, and previous antimalarial
use. Participants were eligible to participate if they had a
minimum of 500 parasites per 200 white blood cells as measured
by microscopy. Study participants were treated with weight-
based dosing of AL according to national guidelines with directly
observed therapy. Blood was collected at time 0 (the time of the
first dose), and at 24, 48, and 72 h after receiving AL. Serum
samples for serology were collected at Day 0 and serum samples
for pharmacokinetic analysis of lumefantrine were collected at
Day 7. All participants were followed weekly for 28 days for
evaluation of recurrent parasitemia by microscopy. Informed
consent was obtained from a parent or legal guardian and age-
appropriate assent was obtained. The study was approved by
Institutional Review Boards at the University of North Carolina
at Chapel Hill, the Kenya Medical Research Institute and the
Muhimbili University of Health and Allied Sciences.

Determination of Parasitemia
DNA was extracted from 200 µL of whole blood sampled from
each participant at each timepoint using Qiagen QiaAMP DNA
extraction kits (Qiagen, Hilden, Germany). The extracted DNA
was suspended in an equal volume of elution buffer. DNA was
quantified using a real-time PCR assay for P. falciparum lactate
dehydrogenase (pfldh) (33) from samples at 0-, 24-, 48-, and 72-h
timepoints. As controls, DNAwas extracted frommocked clinical
samples using cultured parasites (3D7, MRA-102, BEI Resources,
Manassas, VA) and humanwhole blood at known concentrations.
Using this standard curve, parasitemia was determined for each
sample. All PCRs were performed in duplicate and required both
replicates to be positive.

Parasite Genotyping
To determine reinfection or recrudescence, WHO recommended
genotyping of msp2, msp1, and glurp were conducted as
previously described for pairs of initial and recurrent parasitemia
(34). Genotyping for reinfection and recrudescence followed
the original sequential approach proposed by the World
Health Organization (WHO), genotyping msp2 and msp1, using
previously published methods (34–36). PCR fragments were
sized by gel electrophoresis and called by two investigators
using previous published cutoffs (35). Stocks of genomic DNA
from Biodefense and Emerging Infections Research Resources
Repository (BEI Resources)/ Malaria Research and Reference
Reagent Resource Center (MR4) were used as positive controls.

Amplicon deep sequencing of Apical Membrane Antigen
1 (ama1) from samples over the first 72 h was done using
a PCR based indexing strategy (Supplementary Tables S1,

S2). All samples were amplified in technical duplicates.
A target specific amplification was initially carried out,
followed by 0.8X Ampure bead cleaning and a second
PCR for Illumina barcode/sequencing adapter addition
(Supplementary Tables S3, S4). Controls of known mixtures
containing 4 strains (7G8, HB3, DD2, and 3D7) were included
in duplicate at a concentration of 4 parasites/µL and 16
parasites/µL on all amplification plates. Amplicons were
quantified and pooled in equimolar proportions. Pools were
cleaned with 0.65X Ampure beads and eluted in a low-EDTA
TE buffer. Final libraries were sequenced using 2X150 bp
chemistry on Illumina MiSeq at the Rhode Island Genomics and
Sequencing Center. Sample specific reads were demultiplexed
and quality assessed using a sliding window average threshold
(sliding window = 50 bp, step size = 5 bp, quality threshold =

20). The reads were processed using default Illumina settings
of SeekDeep v3.0.0 and collapsed to individual haplotypes
(37). Therefore, each haplotype represented a unique sequence
of pfama within the amplified product of the gene (32).
Additional information on haplotype calling is provided in the
Supplementary Material. Individual samples with reads <250
or a sum of replicate reads <250 were excluded. Haplotypes
representing >0.5% within sample frequency, supported by
at least 10 reads and occurring in both PCR replicates were
included (37). Complexity of Infection (COI) was determined by
the number of infecting haplotypes at a timepoint.

Given the association of the N86Y mutation in Plasmodium
falciparum multi-drug resistance gene 1 (pfmdr1) with
susceptibility to lumefantrine (38), we sequenced this
polymorphism from samples with available DNA. We used
previously described primers to conduct conventional PCR
and Sanger sequenced the product using either the forward or
reverse primer at Eton Bioscience (High Point, NC) and Genewiz
(Morrisville, NC) (39). PCR was conducted using HotStarTaq
Master Mix (Qiagen, Hilden, Germany), 500 nM of each primer
and 2.5 µl of template DNA in 25 µl volume. PCR involved 95◦C
for 15min, followed by 35 cycles of 94◦C for 30 s, 50◦C of 1min
and 72◦C for 1min and a final 10min 72◦C final extension. Data
was analyzed using Geneious Prime (San Diego, CA).

Serology
To assess prior exposure to P. falciparum malaria infection,
IgG antibodies against Merozoite Surface Protein 1 (MSP1)
and Apical Membrane Antigen 1 (AMA1) were determined
using multiplexed Luminex assay (40). MSP1 and AMA1
antigens were coupled to Bio-Plex COOH carboxylated non-
magnetic beads (1.25 × 107) at 100 g/500 µL according to
the manufacturer’s protocol. Raw mean fluorescence intensities
(MFIs) representing IgG antibody levels were measured using
BioPlex 200 Multianalyte Analyzer (Bio-Rad Laboratories) from
a minimum of 50 beads for each analyte, with positive and
negative controls included in each plate (40). To remove non-
specific signal, MFI from BSA-beads from each participant was
subtracted to raw MSP1 and AMA1 MFI values, representing
specific IgG antibody levels. Average MFI values in bead-only
negative control wells were used to normalize the median
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fluorescence intensity of each individual sample to derive
final MFI.

Lumefantrine Drug Levels
Plasma collected on Day 7 was tested at the Center for Research
in Therapeutic Sciences (CREATES, Nairobi) for lumefantrine
levels using HPLC-MS/MS (41). Samples were analyzed in
a singlicate. The lower limit of detection for the method
was 5 ng/ml.

Host Genotyping
In order to assess the impact of known polymorphisms that affect
malaria susceptibility on molecular persistence, nine mutations
in five genes [CD36 T1264G, G6PD med, G6PD +376, G6PD
+202, HbS, HbC, HbE, Duffy (null), and Blood Group O] were
targeted for molecular inversion probe (MIP) designs using
MIPTools (42). Eight of these polymorphisms have previously
been associated with decreased susceptibility to or decreased
disease from falciparum malaria (43–47). One (Duffy null) is
associated with resistance to vivax infection and was included as
a control due to its high expected prevalence in the population.
A total of 14 MIPs were designed (Supplementary Table S5).
Probe sequences and additional genomic information is provided
in the Supplementary Material. MIP captures and data analyses
were carried out as described for previous human genetic analysis
(48). MIP libraries were sequenced on the Brown Genomics Core
Illumina NextSeq (Providence, RI).

Data Analysis
Our primary outcome was prolonged parasitemia clearance
times, as measured by (A) presence of PCR detectable PCR
parasitemia at 72 h and (B) the slope of the relationship between
loge parasitemia and time (49), based on evidence that parasite
clearance follows a linear relationship on the log scale (50).

Risk factors included study site, sex, age, socioeconomic
status, recent antimalarial use, presence of a water source within a
2-min walk from the home, bed net use, the number of mosquito
nets within the home, MSP1 and AMA1 serology results, AL
drug Concentrations on day 7, parasitemia and complexity of
infection (COI) at enrollment (0 h), and human host genotypes
(25–28). Age was calculated as a continuous variable in years. An
asset-based approach, using the values from the first principal
component of a principal components analysis, was used to
calculate socioeconomic status wealth quartiles (51). Variables
used for this metric included housing characteristics (e.g., roof
and wall materials), water source, and ownership of household
appliances (e.g., televisions and radios).

We modeled the relationship between risk factors and
prolonged parasitemia clearance times with generalized linear
models, calculating odds ratios for the presence of detectable
parasitemia at 72 h as a binary variable (presence/absence).
Haplotype-specific estimated parasite clearance slopes were also
calculated by fitting linear models to the decline in logetotal
parasite density. Estimates were calculated for those variants
which were detected at a minimum of 3 time points within each
individual. All tabulations, figures, and models were run using R
3.6.2 (R Foundation for Statistical Computing, Vienna, Austria).

RESULTS

Participant Characteristics
Baseline demographic and serology data were available for 150
participants at each site (Table 1). In the overall population,
137 (45.7%) participants were female, and the mean age was
6.3 years (SD: 2.6). Most participants (146, 97.3%) from Kenya
lived within a 2-min walk from a water source, but only 43
(28.7%) participants from Tanzania reported a water source
nearby. Nearly all participants (96.0%) were from households
that had mosquito nets for sleeping, with a mean of 2.6 nets (SD:
1.2) per household. Only 5 (1.7%) participants reported using an
antimalarial in the last 28 days.

Multiple host factors relating to malaria exposure, malaria
susceptibility, and drug levels were measured. Previous exposure
to malaria was high at both sites with a mean MFI for
anti-AMA1 and anti-MSP1 antibodies of 10,699 (SD: 5,692)
and 6,675 (SD: 3,811), respectively (Supplementary Figure S1).
The frequency of human genotype mutations was similar by
site (Supplementary Figure S2): 19.0% (22/116) of patients
were heterozygous for CD36 T1264G, 15.6% (17/109) were
heterozygous for G6PD +202, 2.8% (3/109) were homozygous
for G6PD +202, 24.6% (50/203) were heterozygous for G6PD
+376, and 23.2% (47/203) were homozygous for G6PD +376.
Only 9.3% (20/214) of patients were homozygous for blood group
O and 9.5% (20/210) were heterozygous for HbS. No participants
from either site had G6PD med, HbC, or HbE mutations. All
participants were homozygous for the Duffy antigen. AL drug
levels at day 7 were detected with a mean value of 184.09 ng/mL
(SD = 254.05 ng/mL, n = 122) in Kenya and 529.46 ng/mL (SD
= 368.95 ng/mL, n = 47) in Tanzania. Fourteen patients from
Kenya had no drug detected on day 7.

Parasite Clearance by qPCR
The mean parasitemia by qPCR at enrollment was 64,922
parasites/µL with a range from 0.34 to 407,645 parasites/uL
(Figure 1). Only five individuals presented with parasitemias
<50 parasites/µL based on qPCR. After treatment, the
parasitemia distribution curve overtime shifted toward zero
(Figure 1), with an average percent change of 99.5% in Kenya
and 91.3% in Tanzania from enrollment to 72 h among
participants with complete data at all timepoints (Kenya: n
= 142, Tanzania: n = 100) (Supplementary Table S6). Despite
decreasing parasitemia across nearly all participants at all time
points (Supplementary Figure S3), 121 (85.2%, 121/145 with
qPCR data at 72 h) participants from Kenya and 96 (96.0%,
96/100 with qPCR data at 72 h) participants from Tanzania still
had qPCR-detectable parasitemia at 72 h. No participants had
microscopy detectable parasitemia at 48 or 72 h.

AMA Genotyping
There were 63 unique haplotypes detected in our study
population, 51 detected in Kenya, and 44 in Tanzania. Haplotype
frequency varied over time (Supplementary Table S7). The
number of reads on average were, 10,394 (SD: 5,256) reads at 0 h,
5,961 (SD: 6,868) reads at 24 h, 3,289 (SD: 7,400) reads at 48 h,
and 2,052 (SD: 5,290) reads at 72 h (Supplementary Table S8).
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TABLE 1 | Baseline characteristics of study participants by study site.

Type Variable Kenya (n = 150) Tanzania (n = 150) Overall (n = 300)

Demography Female sex 74 (49.3) 63 (42.0) 137 (45.7) n (%)

Age (years) 5.1 (2.2) 7.5 (2.4) 6.3 (2.6) Mean (SD)

Water within a 2min walk from the house 146 (97.3) 43 (28.7) 189 (63.0) n (%)

Household has mosquito nets 142 (94.7) 146 (97.3) 288 (96.0) n (%)

Number of mosquito nets 2.3 (1.0) 3.0 (1.2) 2.6 (1.2) Mean (SD)

Antimalarial use in the last 28 days 3 (2.0) 2 (1.3) 5 (1.7) n (%)

Serology AMA1 antibody level (MFI) 10,908 (5,935) 10,465 (5,419) 10,699 (5,692) Mean (SD)

MSP1 antibody level (MFI) 7,009 (3,808) 6,301 (3,793) 6,675 (3,811) Mean (SD)

PCR qPCR parasitemia (parasites/µL) 70,168 (78,971) 58,675 (58,466) 64,922 (70,467) Mean (SD)

Complexity of infection (# haplotypes) 2.0 (1.3) 1.6 (1.0) 1.8 (1.2) Mean (SD)

Additional missing values: age (KE = 2, TZ = 4), bednet use (KE = 1, TZ = 2), # of bednets (KE = 8, TZ = 4), antimalarial use (KE = 1, TZ = 2), AMA1 (KE = 2, TZ = 18), MSP1 (KE =

2, TZ = 18), COI (KE = 12, TZ = 66), parasitemia (KE = 0, TZ = 24).

FIGURE 1 | Frequency of log parasitemia counts (parasites/µL) for participants with complete data (Kenya, n = 142; Tanzania, n = 100), stratified by time point.

The mean COI was 1.8 haplotypes (SD: 1.2) with a range from
1 to 8 (Supplementary Figure S4). We amplified and sequenced
8 replicates of controls using an estimated 90:10 two-strain
mixture, finding low error around the estimated frequency, with
means of 0.89 (SD: 0.006) and 0.11 (SD:0.006).

Pfmdr1 Genotyping
In total, DNA was available from 150 Kenyan participants and
130 Tanzanian participants for genotyping. The success rate of
sequencing was 64% (96/150) in Kenya and 80.8% (105/130)
in Tanzania. All samples contained the N86 (wild type) allele
associated with increased tolerance to lumefantrine. Theses
alleles were found in individuals with and without molecular

persistence at 72 h. Given no 86Y (mutant) alleles were found,
risk could not be determined.

Risk Factor Assessment
Participants from Tanzania had 4.17 (95% CI: 1.52 to 14.64, p
= 0.01) times the odds of having detectable parasitemia at 72 h
post-treatment compared to participants from Kenya (Table 2).
Risk factors include higher parasitemia at baseline with an odds
ratio (OR) of 1.02 (95% CI: 1.01–1.03, p = 0.01) for every 1,000
parasites/µL increase. COI at baseline was protective against
detectable parasitemia at 72 h with an OR of 0.70 (95% CI: 0.53–
0.94, p = 0.01) for every additional haplotype in an infection.
None of the other measured demographic, serological, or human
host genetic risk factors displayed any association with detectable
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TABLE 2 | Bivariate associations between demographic and biological risk factors and detectable parasitemia at 72 h (N = number of participants).

Type Variable N OR 95% CI p-value

Demography Site (TZ vs. KE) 242 4.17 1.52 14.64 0.01

Female sex 242 1.41 0.61 3.36 0.4

Age (years) 239 1.02 0.86 1.20 0.9

Wealth quartiles 238 0.77 0.51 1.12 0.2

Water within a 2min walk from the house 242 0.38 0.11 1.03 0.08

Household has mosquito nets 241 1.46 0.08 9.04 0.7

Number of mosquito nets 234 1.29 0.87 2.02 0.2

Antimalarial use in the last 28 days 240 1.03 0.96 - 0.8

Serology AMA1 antibody level (1,000 unit change) 237 1.00 0.93 1.07 1.0

MSP1 antibody level(1,000 unit change) 237 0.97 0.87 1.09 0.6

PCR qPCR parasitemia at baseline (1,000 parasites/uL change) 242 1.02 1.01 1.03 0.01

Complexity of infection (# haplotypes) 222 0.70 0.53 0.94 0.01

AL levels AL levels at day 7 (100 ng/mL change) 99 0.92 0.77 1.14 0.4

Host genotyping CD36 T1264G (heterozygous) 90 3.54 0.63 66.86 0.2

G6PD + 202 (heterozygous) 84 1.03 0.15 20.63 1.0

G6PD + 376 (heterozygous) 165 1.05 0.26 5.18 0.9

G6PD + 376 (homozygous) 165 0.49 0.14 1.82 0.3

Blood group O (homozygous) 175 1.71 0.29 32.69 0.6

HbS (heterozygous) 170 1.27 0.22 23.88 0.8

TZ, Tanzania; KE, Kenya.

parasitemia at 72 h, although precision was low for human
genetic factors due to the small sample size.

Haplotype-Specific Slopes
Haplotype specific slopes were determined for all haplotypes that
were detected at a minimum of three time points as previously
described (32, 52). The mean estimated clearance slopes of
parasites, based on total parasite densities by qPCR, isolated
from Kenya and Tanzania were −0.13 (SD: 0.04) and −0.14 (SD:
0.04), respectively, with most haplotype-specific slopes hovering
close to the mean (Figure 2). Within-individual level haplotypes
are shown in Supplementary Figure S5. Within each country,
specific haplotypes were not associated with lower slope.

Reinfection and Recrudescence
A total of 45 individuals had recurrent parasitemia during the
28-day follow-up (Kenya = 33 and Tanzania = 12). Samples
were deemed a re-infection if pairs contained unique bands at
one or both genes. Band sharing at a single site (with failure at
the second site) was deemed uninterpretable. Recrudescence was
defined as band sharing at both sites. glurpwas not genotyped due
to its poor discriminatory power. We were able to successfully
genotype 39 (87%) of these sample pairs as reinfection or
recrudescence (32 from Kenya and 7 from Tanzania). In total, 6
infections were classified as recrudescence by having matching
alleles in both loci (3 in Kenya and 3 in Tanzania). All other
samples had novel alleles in at least one assay. A total of 2
samples (one in each country) were deemed indeterminate based
on a single site amplifying. The remaining 5 samples had no
bands generated. There was no association between recurrent

parasitemia and persistence of PCR positivity at 72 h (p = 0.9)
or COI at enrollment (p= 0.9).

DISCUSSION

The majority of participants at both of our study sites had
detectable P. falciparum parasitemia by PCR at 72 h after
treatment initiation with AL. No patients had detectable
infection by microscopy at 48 or 72 h. High parasitemia and
low COI at baseline were the only factors associated with
detectable parasitemia at 72 h. Haplotype-specific estimated
parasite clearance slopes were grouped around the mean
with no association detected between specific haplotypes
and slow clearance rates, with the majority of infections
being monoclonal at all timepoints. Few recrudescences were
observed after treatment using msp1/msp2 genotyping. Neither
country has documented widespread presence of validated K13
mutations (53, 54).

The clinical significance of persistent submicroscopic
parasitemia after ACT therapy remains uncertain (55). Sustained
PCR-detectable parasitemia at day 3 has been associated with
recurrent microscopic parasitemia, longer gametocyte carriage
duration, and a higher likelihood of infecting mosquitoes (20).
Multiple studies have shown persistence of DNA for well beyond
3 days post-treatment with ACT, including among travelers with
no chance of reinfection (56, 57). It has been shown that these
parasites remain transcriptionally active suggesting continued
viability (58, 59). A recent study has suggested that ring stage
density determined by transcript specific qRT-PCR of a ring
specific transcript is associated with recurrent parasitemia at Day
42 (59). While these findings are intriguing given a recent report
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FIGURE 2 | Variant-specific estimated clearance slopes of parasites isolated from individuals in Kenya (n = 99) and Tanzania (n = 71) ± 1 standard error. Clearance

slopes were estimated by fitting linear models to the decline in loge total parasite density. Each point represents a single study participant. Estimates are shown only

for those variants which were detected at a minimum of 3 time points. Dashed horizontal lines indicate the mean estimated clearance slope of parasites (defined as

the average slope by qPCR) in each region ± 1 standard deviation (shaded regions).

of failure associated with prolonged PCR detected parasitemia
(21), further research of persistent detection of malaria post ACT
therapy is needed to determine clinical significance.

A recent review has shown that PCR positivity at day
3 is variable and becoming more frequent in sub-Saharan
Africa (55). Most participants in our study had PCR-detectable
parasitemia at 72 h; 85.2% of patients in Kenya, and 96.0%
of patients in Tanzania. These estimates are higher than
previously published results from one of our study sites in
Tanzania, showing that 43.8% of patients had PCR-detected
parasitemia 72 h after administration of AL (28), and higher
than estimates from Kenya where 33.3% of children had
qPCR-detectable parasitemia on day 3 after treatment with
AL (20). The temporal patterns of prevalence of day 3 PCR
positivity are also variable. Studies in Angola have shown a
persistent increase in the rate of day 3 parasitemia, while
studies in Tanzania have suggested variation over the years (28,
60).

Previous work has shown that persistence of submicroscopic
day 3 parasitemia is associated with multiple clinical and
demographic factors, including pre-treatment parasitemia,
anemia, younger age (<5) and fever at baseline (20, 28). We
also see that high parasitemia at baseline impacts clearance,
as expected (61), but the COI was inversely related, with
participants with low COI being more likely to have detectable
day 3 parasitemia. We postulate that infections with a lower
COI are caused by haplotypes for which the individual does
not have pre-existing strain specific immunity. In the absence
of treatment, these strains have a large within-host advantage,
leading to their dominance and possible competitive exclusion
of other strains, resulting in a lower COI. In the presence of
treatment, this lack of host immunity could contribute to longer
parasite clearance times. Immunity has been routinely linked to
antimalarial efficacy (54, 62–65). While our population appears
highly exposed tomalaria based upon our serologic profiles, these
assays do not provide any information on the strain-specificity
of that immunity. Given the use of a single locus for genotyping,
we did not identify any specific parasite haplotype associated

with persistent parasitemia in this study. Other factors, including
host genetic polymorphism and environmental context were not
associated with a difference in risk for day 3 positivity.

This study has multiple strengths including the use of 2
independent sites using the same protocols contemporaneously,
a controlled environment with routine sampling, and the
use of genotyping tools to determine human genotypes and
haplotype specific clearance. Given the growing concerns about
the efficacy of artemisinin-based combination therapies in sub-
Saharan Africa, these data add to our current understanding
of parasite clearance, the clinical metric of resistance. There
are, however, multiple limitations to the study. First, we did
not sample between 0 and 24 h and therefore cannot calculate
slope with a lag time. Second, we were also limited by
small sample size for multiple analyses, especially for day 7
drug levels and human genotyping, due to extraction failure
or missingness. Lastly, we are reliant on a single locus for
our haplotype-specific clearance genotyping, which limits the
ability to truly define strains (52). Multi-locus genotyping
would potentially be more powerful but would be significantly
hampered by the low parasitemia levels in samples taken late
during therapy (42, 64).

Given the preliminary and concerning finding of artemisinin
resistance in sub-Saharan Africa, vigilance is needed in the
continued evaluation of emergence and spread. There remains
uncertainty about the clinical implication of day 3 (or later)
submicroscopic or PCR detectable parasitemia on clinical
outcomes. Therefore, programs should continue to monitor
for day 3 microscopic persistence, genotypically corrected
recrudescence and molecular markers for the evaluation of
the emergence of artemisinin resistance in sub-Saharan Africa.
The within-host diversity data from this and other studies
have the potential to help us understand how the resistance
may spread once it evolves. It may provide insight into
how strain-specific immunity can impact ACT therapy. It
can also be used to better understand relative fitness of
drug resistant parasites and within host competition that may
impact spread after emergence. Studies that are monitoring
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ACT efficacy should consider including COI-specific analyses
and day 3 microscopic persistence, especially early-on as
resistance emerges.
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