Supporting Information

Ion exchange biomaterials to capture daptomycin and prevent resistance

evolution in off-target bacterial populations

Shang-Lin Yeh,¹ Naveen Narasimhalu,¹ Landon G. vom Steeg,² Joy Muthami,¹ Sean LeConey,¹ Zeming He,¹ Mica Pitcher,^{1,3} Harrison Cassady,⁴ Valerie J. Morley,^{2,+} Sung Hyun Cho,⁵ Carol Bator,⁵ Roya Koshani,¹ Robert J. Woods,⁶ Michael Hickner,^{1,4} Andrew F. Read,^{2,5} Amir Sheikhi^{1,7}*

¹Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA

²Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA

³Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA

⁴Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA

⁵Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA

⁶Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA ⁷Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA

⁺Present address: NTx, 7701 Innovation Way, NE Rio Rancho, NM 87144

*Corresponding Author: Amir Sheikhi (sheikhi@psu.edu)

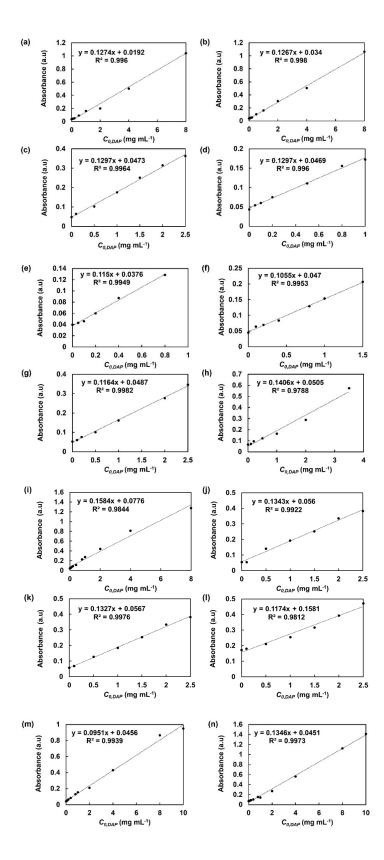


Figure S1. Calibration lines of DAP UV-vis absorbance at 364 nm in (a) Milli-Q water,

(b) NaCl solution (500 mM), (c) maleic acid (100 mM), (d) bile acid (12 mM), and CaCl₂ solutions of (e) 10 mM, (f) 50 mM, (g) 100 mM, (h) 200 mM, and (i) 500 mM, and lecithin solution of (j) 0.5 mM, (k) 1 mM, and (l) 1 mM containing 4 mM of CaCl₂, as well as in the (m) FaSSIF and (n) FeSSIF.

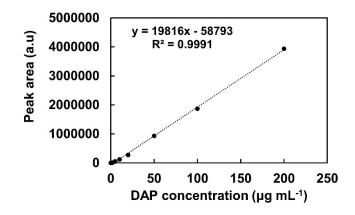


Figure S2. Linear regression analysis of calibration line for DAP solutions, ranging

from 10 μ g mL⁻¹ to 200 μ g mL⁻¹ in Milli-Q water obtained using the HPLC.

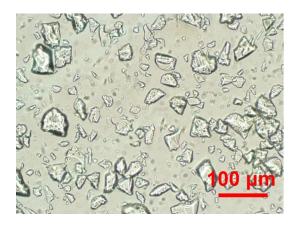


Figure S3. Optical microscopy image of cholestyramine IXB.

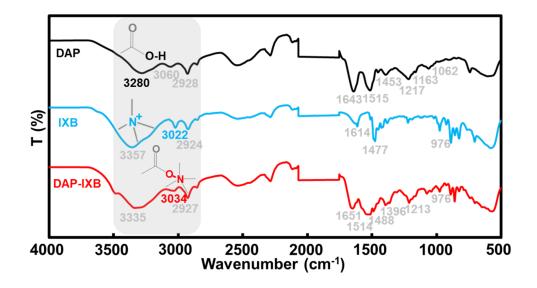


Figure S4. ATR-FTIR spectra of DAP, IXB, and DAP-IXB complex.

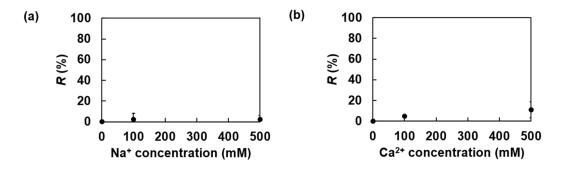


Figure S5. DAP (8 mg mL⁻¹) removal percentage (precipitation) at varying (a) Na⁺ and

(b) Ca^{2+} concentrations without using the IXB. Data are reported as mean \pm standard

deviation, n = 3.

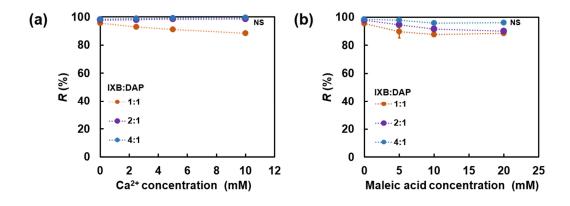


Figure S6. Effect of IXB dose (8, 16, or 32 mg mL⁻¹) on the DAP (8 mg mL⁻¹) removal

percentage (*R*) at varying Ca²⁺ and maleic acid concentrations. Data are presented as mean \pm standard deviation, n = 3. NS represents p>0.05 for the DAP removal percentage at 10 mM of Ca²⁺ or 20 mM of maleic acid compared with the Ca²⁺- or maleic acid-free systems, respectively.

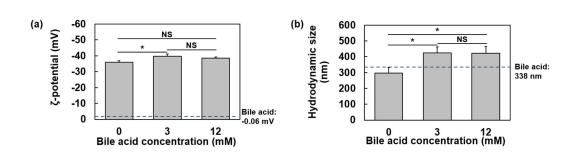


Figure S7. (a) ζ -potential and (b) hydrodynamic size of DAP at varying bile acid concentrations. Data are reported as mean \pm standard deviation, n = 3. NS shows p>0.05, * is p<0.05, ** represents p < 0.01, and *** indicates p < 0.001.

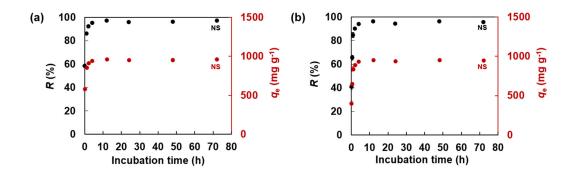


Figure S8. Kinetics of DAP (8 mg mL⁻¹) removal by IXB (8 mg) in the (a) FaSSIF or (b) FeSSIF. Data are reported as mean \pm standard deviation, n = 3. NS represents p>0.05

between the DAP removal percentage or capacity after 4 h or 12 h incubation.

Figure S9. Bacterial densities (OD₆₀₀) for DAP (256 μ g mL⁻¹) after contact with varying doses of cholestyramine IXB. Data are presented as mean \pm standard deviation,

n = 4.