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Abstract

We analyse the evolution of the distribution of dispersal distances in a stable

and homogeneous environment in one- and two-dimensional habitats. In this

model, dispersal evolves to avoid the competition between relatives although

some cost might be associated with this behaviour. The evolutionarily stable

dispersal distribution is characterized by an equilibration of the fitness gains

among all the different dispersal distances. This cost-benefit argument has

heuristic value and facilitates the comprehension of results obtained numer-

ically. In particular, it explains why some minimal or maximal probability of

dispersal may evolve at intermediate distances when the cost of dispersal

function is an increasing function of distance. We also show that kin selection

may favour long range dispersal even if the survival cost of dispersal is very

high, provided the survival probability does not vanish at long distances.

Introduction

Dispersal affects both the population dynamics and the

population genetics of species. Reciprocally, the dynam-

ics and the genetics of species are likely to act on this

behaviour. The forces that may select for higher proba-

bilities of dispersal include (1) temporal variability in the

habitat (Van Valen, 1971); (2) avoidance of inbreeding

depression (Bengtsson, 1978); (3) kin competition (Ham-

ilton, 1964; Hamilton & May, 1977). As a first approxi-

mation, the evolution of dispersal may be described by a

balance between these forces and a cost due to either

increased mortality during the dispersal phase or during

the settling period in a novel habitat. All these factors are

often pooled in a single parameter: the cost of dispersal.

Further, it is very convenient to assume an island model

of migration, where dispersers are redistributed ran-

domly among the different populations. Under this

simplifying assumption dispersal is fully characterized

by a single parameter, the dispersal probability, which

measures the fraction of the progeny leaving its natal site.

However, dispersal does not usually follow an island

model and the distribution of dispersal distances is often

of interest in itself. It is known that the shape of the tail of

the distribution of dispersal distance (long-distance dis-

persal) determines the rate of spread of colonizing

populations as shown by studies of disease epidemics or

of post-glacial rates of advance in many plant species (e.g.

(Mollison, 1991; Kot et al., 1996; Shigesada & Kawasaki,

1997; Clark et al., 2001). Although the evolution of the

dispersal probability has been analysed assuming disper-

sal is localized, as in �stepping stone� models, it was still

assumed that the distribution of dispersal distance itself

was fixed and that the cost was independent of distance

(Comins, 1982; Gandon & Rousset, 1999). However, the

distribution of dispersal distances itself is subject to

selection. Here, our analysis assumes that there is no a

priori constraint on the dispersal distribution: any

distribution is a possible strategy. This contrasts to models

where a more restricted family of dispersal distributions is

considered (Ezoe, 1998; Bolker & Pacala, 1999; Gandon

& Rousset, 1999; Harada, 1999).

The different selective pressures acting on the shape of

the dispersal distribution vary with the dispersal distance

(Ronce et al., 2001). In this paper we provide a formal

basis for the evolution of dispersal distribution in the case
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where only two forces are acting: kin competition and

distance-dependent cost of dispersal. In a stable and

homogeneous habitat there is always a benefit to disperse

far because it decreases the risk of competing with related

individuals. On the other hand, the cost of dispersal may

be an increasing function of dispersal distance. This cost

will have a direct effect on the evolution of dispersal but

it will also feed back on the distribution of genetic

variation and, therefore on kin competition and the

benefit of long-distance dispersal. Kin competition and

distance-dependent cost of dispersal are ubiquitous forces

acting on this distribution and our aim is to provide a

model which may serve as a reference against which one

can evaluate the importance of additional factors that

may affect the evolution of dispersal distributions.

We first present a general treatment of the evolution of

dispersal with any number of demes and for any function

of dispersal cost. This analysis is then used in one- (1D)

and two-dimensional (2D) models to study the effects of

two factors on the evolution of dispersal: (1) deme size;

(2) the shape of the cost of dispersal function. We find

that long-distance dispersal is selected for even if the

survival cost of dispersal is very high, provided the

probability of survival does not vanish at long distances.

This analysis relates the evolutionarily stable dispersal

distribution to a given distribution of distance-dependent

cost of dispersal.

The model

Formulation

The phenotype of an adult is described by the dispersal

probabilities ð. . . ; di; . . .Þ � d of its juveniles to all possible

distances i � ðx; yÞ, as shown, e.g. in Fig. 1.

Life cycle

The habitat consists of a finite number, n, of demes on a

lattice organized in a 1D or 2D torus of sizes nx and ny in

each dimension (n ¼ nxny). On the lattice, individuals are

separated by distances i ¼ ðx; yÞ for discrete values of x

and y. All demes are occupied with an equal number, N,

of haploid individuals. We assume the following life-

cycle: (i) reproduction occurs and a large number of

juveniles are produced. (ii) Mutation occurs at a rate u.

(iii) Juvenile dispersal occurs under a given distribution

of dispersal distances. (iv) Dispersing offspring incur the

cost of dispersal, ci, which is a function of dispersal

distance i. (v) Adults die. (vi) Offspring compete for the N

available sites in each deme.

Isolation by distance

Some genetic differentiation results from localized disper-

sal. Differentiation may be measured by the probability of

identity by descent in a mutation-drift model under the

given life-cycle. Under the assumptions of the model,

such probabilities depend on the distance i (relative

position) between the genes, but not on their absolute

position in space. We note Qi the probability of identity of

genes from two juveniles sampled in demes separated by

distance i, after dispersal and before competition.

Conditions for convergence stability

Here we define conditions for convergence towards an

evolutionarily stable dispersal distribution. We consider

selection among �symmetrical� strategies, i.e. given a

dispersal probability at some distance ðx; yÞ, we assume

the same dispersal probabilities at distances ðx;�yÞ,
ð�x; yÞ, and ð�x;�yÞ (as show, e.g. in Fig. 1). We write

d�x;�y for the sum of dispersal probabilities at these

different symmetrical distances. Each phenotype may

thus be described by d0;0; d�1;0; d0;�1; d�1;�1; . . .
� �

, where

d0;0 is the fraction of philopatric offspring. No constraint is

imposed on these probabilities, except that they sum to 1.

Consider first two alleles a and A, strategies da and dA

differ as follows. For allele A the dispersal probability dA
D

at some distance D � ðDx;DyÞ is higher than the disper-

sal probability da
D at this distance for allele a. For allele

A, dispersal probabilities to all other distances are

reduced in proportion to ð1 � dA
�Dx ;�Dy

Þ=ð1 � da
�Dx ;�Dy

Þ.
Here dD may be noted simply z, with values za or zA

for individuals bearing allele a or A. The strategy of a

focal individual will be noted z�, and the average

strategy of individuals at distance i relative to the focal

individual will be written zi.

Fig. 1 A two-dimensional dispersal distribution. In comparison with

this Figure, Fig. 2 presents distributions binned in intervals

½0; 0:5	; ½0:5;1:5	; . . . ; ½9:5; 10:5	, obtained by summing all probabili-

ties of dispersal at Euclidian distances within ranges

½0; 0:5	; ½0:5;1:5	; . . . ; ½9:5; 10:5	, shown here in different shadings.

This example shows the dispersal distribution for a linear cost of

dispersal (Fig. 2c), with N ¼ 1.
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The expected number of adult offspring of a focal

individual can then be described by a fitness function

wðz�; z;DÞ, function of the focal individual’s strategy and

of the strategies of all its competitors z � . . . ; zi; . . .ð Þ
over all distances from the focal individual on the

lattice. Following Gandon & Rousset (1999), w can be

expressed in terms of the relative number gi!j of

juveniles from deme i (relative to the focal deme) in

competition for deme j (relative to the focal deme) after

dispersal:

wðz�; z;DÞ �
X

j

g0!jðz�;DÞP
i gi!jðzi;DÞ:

ð1Þ

Each term of the sum over j represents the expected

number of offspring of the focal in the deme at distance j

from the focal parent. Each of these terms is the ratio of

the focal individual’s juveniles (the numerator of the

ratio) relative to all juveniles that come in competition

for this deme (the denominator of the ratio). The

functions gi!j are detailed in eq. 5 in the Appendix.

Selection on the A allele can then be measured by

/DðzaÞ � lim
u!0

SDðzaÞ
1 � Q0

ð2Þ

where

SDðzaÞ �
X

i

ðQ0
i � 1Þ@zi

wðz�; z;DÞ ð3Þ

(Rousset & Billiard, 2000). In this expression, effects of

neighbours with average phenotype zi on the fitness of

an A-bearing individual are measured by the derivative

with respect to zi, evaluated in za for all z variables.

Each such effect is weighted by the probability Q0
i,

which measures the covariation between the pheno-

type of the focal individual and the phenotypes repre-

sented by each variable zi. Hence Q0
i is the identity

between the focal adult and a random adult at distance

i relative to the focal one.

In particular, z0 represents the average phenotype in

the focal deme, including the focal individual. Hence Q0
0

is the identity between the focal adult and a random

adult in the focal deme. With probability 1=N, this

random adult is the focal individual itself. The identity

between different individuals when adults (i.e. after

competition in the life cycle) is identical to their identity

when sampled younger (right before competition),

which was noted Qi. Hence Q0
0 ¼ 1=N þ ð1 � 1=NÞQ0

and Q0
i ¼ Qi for i 6¼ 0.

A dispersal probability za is stable against a mutant A,

with the effects described above on the dispersal distri-

bution, if it obeys either of the following conditions: (i)

za ¼ 0 and /Dð0Þ � 0 (dispersal is counterselected at

distance D), or (ii) za > 0 and /DðzaÞ ¼ 0 (some interme-

diate dispersal probability is selected). Now consider the

stability of a strategy against mutants that may alter the

dispersal distribution in a more complicated way, e.g. by

increasing dispersal at several distances. For all dispersal

distances D;D0 at which it has nonzero levels of dispersal,

the strategy is stable only if /D ¼ /D 0 ¼ 0 (see Appendix).

Using expressions for /D derived in the Supplementary

Appendix (see section Supplementary material), this

implies

1 � cDð Þ 1 �
X

i

mDþiQ
0
i

 !
¼ 1 � cD 0ð Þ 1 �

X
i

mD0þiQ
0
i

 !

ð4Þ

where the m’s are the backward dispersal probabilities

mj � g0!j=
P

i gi!j, i.e. the probabilities that an adult was

born i demes away, by contrast with the �forward¢ rates di

which describe where juveniles go.

A cost–benefit argument

Equation 4 leads to an intuitive cost-benefit argument.

Dispersal at a distance D is associated with two types of

costs: (i) cD is the direct cost (cost paid by the disperser)

whereas (ii)
P

i mDþiQ
0
i measures the indirect cost be-

cause of the competition (in deme D) with related

individuals (from demes i steps apart). The above relation

shows that, at the ESS, the product of direct and indirect

benefits (1-costs) should be the same at different disper-

sal distances. If the overall benefits associated with a

particular dispersal distance were higher, a mutant

strategy with higher dispersal at such distance could

invade. The convergence stable distribution of dispersal

cannot be replaced by any mutant and is characterized by

an equilibration of the fitness gains among all the

different dispersal distances.

The above cost-benefit argument yields some predic-

tions regarding the shape of the convergence stable

dispersal distribution. Let us focus on an organism

sending all the dispersers at the same distance. All the

dispersed offspring produced in a given deme (i.e.

relatives) will compete against each other after the

dispersal phase, leading to a large indirect cost of

dispersal. The indirect cost of dispersal would be lower

if these offspring dispersed at different dispersal distances.

In other words, there is an inclusive benefit to spread the

dispersers in different demes. Hence, if the cost of

dispersal does not increase with distance, dispersal should

follow an island mode of dispersal, where individuals that

leave their natal deme are distributed randomly among

all other demes.

However, the direct cost of dispersal is likely to be an

increasing function of distance and, consequently, will

select for less dispersal at higher distances. On the

contrary the indirect cost will decrease with distance if

there is lower dispersal at higher distances, because

probabilities of identity will decrease with distance

(genetic isolation by distance). This will select for more

dispersal at higher distances. The magnitude of these

different effects will be investigated below.
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Finding the ES dispersal distribution

The analysis of the evolution of the distribution of

dispersal distances can be viewed as the analysis of the

coadaptation of dispersal probabilities at different distan-

ces. The above cost-benefit analysis has heuristic value

but it does not directly yield a quantitative prediction

because the probabilities of identity are themselves a

function of the dispersal distribution. In the Appendix we

show how to construct an iterative algorithm to find the

ES distribution of dispersal distances.

We note that this algorithm could be used for other

purposes than in this paper. In particular we may

constrain the evolution of dispersal to a given range of

dispersal distances. Iterating the algorithm from an initial

distribution with nonzero dispersal within this range and

zero dispersal outside leads to the optimal distribution

under such constraints.

We will use this algorithm to analyse the effects of (i) the

size of the demes (ii) the shape of the cost function and (iii)

the shape of the habitat (one or two dimensions). We

explored the effect of the cost of dispersal through five

different shapes of dispersal function: (1) an �island� cost of

dispersal where the cost is independent of dispersal

distance as in the classical island model; (2) a �saturating�
cost as function of distance; (3) a �linear� increase of the cost

with distance; (4) an �accelerating� cost; (5) a �stepped�
function where the cost increases step by step. Figure 2

presents some results: the convergence stable dispersal

distribution, the average dispersal distance, the mean

squared distance and kurtosis of the distribution. Dispersal

can be described as the probability distribution of dispersal

at somevectorial distance ðx; yÞ, but it is also often described

as thedistributionof Euclidian distance
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. Further,

dispersal data are often binned in distance classes. Hence

we will show binned distributions, computed by summing

such probabilities into bins corresponding to different

ranges of Euclidian distance (see Fig. 1).

Result 1 (Deme size): Not surprisingly, larger deme size

decreases the strength of kin competition at a natal site,

which reduces both the dispersal probability (see also

Taylor, 1988; Gandon & Rousset, 1999) and (with the

exception of the island cost of dispersal) the average

dispersal distance (Fig. 2).

Result 2 ( �Island� cost of dispersal): As expected from the

qualitative argument presented in the previous sub-

section, we find that an �island� cost of dispersal (Fig. 2a)

selects for an island mode of dispersal. A formal proof of this

result can be obtained (see Supplementary Appendix).

Result 3 (intermediate minimum cost): Another easily

understood result is that when the cost of dispersal is

minimized at some dispersal distance, the distribution of

dispersal is also maximized at an intermediate distance

(not shown). The maximum dispersal probability may be

slightly further than the distance of this minimal cost, as

a result of kin competition effects.

Result 4 (slow increase of cost): Less trivially, we find

that if the direct cost increases more slowly than the

indirect cost decreases with distance, it is possible to have

a local maximum of dispersal at an intermediate distance.

For example, when the cost of dispersal increases step by

step (Fig. 2e) the distribution of dispersal evolves towards

a saw-like shape where peaks of dispersal occur at the

end of each step. On each step the direct cost does not

vary whereas the indirect cost decreases with distance

(because of the decrease of genetic identity with dis-

tance). This explains the evolution of higher dispersal at

the end of the steps.

The example of the stepped cost function shows that if

the cost sharply increases at some threshold distance, the

optimal strategy allocates more dispersal right before this

threshold. It should be noted that there is a simple

mechanism which can generate a distribution with a

maximum followed by a sharp decline at larger distances:

ballistic dispersal (Stamp & Lucas, 1983; Neubert et al.,

1995). Ballistic dispersal may be understood as a mechan-

ism with a given cost independent of realized dispersal

distance up to a maximum distance imposed by this

mechanism, and with a maximal dispersal probability at

this maximum distance. Thus, it may be understood as a

way of minimizing kin competition under constraints close

to those described by a stepped cost function. Airborne

dispersal can also generate distributions with a maximum

at an intermediate distance, e.g. the lognormal distribution

(Stoyan & Wagner, 2001, and references therein).

Another example is illustrated in the one-dimensional

case when the cost saturates (Fig. 2b). In this case, the

direct effect of the cost increases more slowly than the

indirect cost of competing with relatives decreases. This

yields a local minimal probability of dispersal at an

intermediate distance.

When the cost of dispersal increases monotonically

with distance (Fig. 2b–d) the evolutionary outcome

depends on the increase of the cost function. As expec-

ted, a �saturating� function of the cost of dispersal

(Fig. 2b) yields much more long-distance dispersal than

an �accelerating� function (Fig. 2d). It is shown in the

Supplementary Appendix (eq. A.29) that in one dimen-

sion, if 1=ð1 � ciÞ increases faster than distance i, disper-

sal must be zero beyond some distance, so that there is no

long-distance dispersal. This is because the relative

quantitative effects of the cost of dispersal and of the

benefits of avoiding competition between relatives are

given by a comparison of 1=ð1 � ciÞ to a measure of

relatedness that varies linearly with distance (Rousset,

1997). In two dimensions we have a similar result except

that the same measure of relatedness increases as the

logarithm of distance. In other words, as relatedness

decreases more slowly with distance in two dimensions,

it pays less to disperse further away. Thus, the condition

for the existence of long distance dispersal is more

restrictive in two than in one dimension.
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Result 5 (Evolution of long distance dispersal): If the

survival probability does not vanish at long distances,

then long distance dispersal is selected for. This is a

consequence of the previous result 4, as in this case

1=ð1 � ciÞ increases too slowly at long distances to select

against dispersal.

Individual based simulations have also been done in

some cases as an independent way of obtaining the ES

dispersal distribution. These simulations confirmed the

results of numerical computation (Fig. 2e) and showed

that evolution yields only one optimal distribution of

dispersal (e.g. no stable polymorphism). Some differences

between numerical and simulation results can result

from the recurrent introduction of new genotypes

through mutation (in the simulation we assumed a

mutation rate equal to 2:5 � 10�4). Indeed, higher

mutation rates tend to bias the distribution of dispersal

distance towards a distribution with identical dispersal

probabilities at each distance. Nevertheless, these differ-

ences were small.

Discussion

What can be inferred from data?

Beyond quantifying the general trends expected from the

qualitative arguments noted in the previous Section, our

numerical analysis suggests some additional results. The

Mean =

Mean =

Mean =

Mean =

Mean = Mean =

Mean =

Mean =

Mean =

Mean = Mean =

Mean =

Mean =

Mean =

Mean = Mean =

Mean =

Mean =

Mean =

Mean =(a)

(b)

(c)

(d)

(e)

Cost of dispersal

Distance

1D 2D

N = 1 N = 10 N = 1 N = 10

Fig. 2 Evolutionarily stable distributions of dispersal distance. Dispersal distributions are shown for different costs of dispersal functions

(first column) and different deme sizes (N ¼ 1 or 10) in one and two dimensional habitats (150 and 20 � 20 demes, respectively). In 1D case we

obtained a maximal dispersal distance equal to 10 to facilitate comparison with the 2D case, by setting the cost to at least 0:5 at larger

distances. In the two dimensional case we show the binned distribution, as explained in Fig. 1. Numerical computations were done using

Mathematica (Wolfram, 1999). For each distribution, the mean dispersal distance (�mean�), mean squared dispersal distance (r2) and kurtosis

(c2) are also given. For one of the costs of dispersal function (last row) we plot the results of an individual-based simulation in a one

dimensional habitat with 150 (N ¼ 10) or 500 (N ¼ 1) demes [mean � standard error, computed by the batching method for Markov chains,

Hastings (1970); for 20 batches of 106 generations].
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above examples show that different functions of the cost

of dispersal yield very different distributions of dispersal.

Available data on the distribution of dispersal also show a

high diversity. Even if dispersal distributions are often

leptokurtic, i.e. have positive kurtosis (e.g. reviews and

data in Endler, 1977; Portnoy & Willson, 1993; Clark

et al., 1999), many seed dispersal distributions have been

found to have low kurtosis (Clark et al., 1999). The

diversity of dispersal behaviours may thus be explained

by the diversity of distance-dependent cost of dispersal.

However, the kurtosis of observed dispersal distribu-

tions is often much higher than the one found in the

above numerical examples. This suggests that the actual

cost of dispersal generally increases much more slowly

than assumed in computing these examples. Little is

known about the empirical relation between the cost of

dispersal and distance. Qualitatively different relation-

ships have been found. In some cases, the fitness costs

induced by parasites have been shown to decrease with

the distance of origin of hosts (Kaltz & Shykoff, 1998).

Some studies of �inbreeding� and �outbreeding depression�
have found minimal costs at an intermediate distance

(review in Waser, 1993; Ronsheim, 1997). Distance

and ⁄or density-dependent predation or parasitism (e.g.

Janzen, 1970; Packer & Clay, 2000) may also result in

maximal costs at short distances. Our analysis can be

used to infer the cost of dispersal function from observed

distributions of dispersal distance (see Section 3 of the

Supplementary Appendix). It would thus be particularly

interesting to measure the cost of dispersal function and

to compare it with the one inferred from the dispersal

distribution. Any discrepancy between these two func-

tions would demonstrate that the simplifying assump-

tions of our model are not met and that other forces are

acting on the evolution of dispersal distance.

Complications

The above analysis shows that different costs of dispersal

functions will act both directly (survival of dispersers)

and indirectly (through its effect on relatedness). This

second, indirect effect explains the occurrence of some

minimal probability of dispersal at intermediate distan-

ces. However, in plants, relatedness is likely to depend

not only on seed dispersal (probabilities and costs of

dispersal) but also on pollen dispersal. Genetic isolation

by distance will be reduced by pollen dispersal, and our

results could be viewed as an overestimation of seed

dispersal probabilities when pollen dispersal occurs. The

distribution of pollen dispersal distance is also likely to

evolve, and it would be interesting to further investigate

the coevolution between seed and pollen dispersal.

Another complicating factor is dormancy, which also

reduces competition between relatives, along with other

consequences, and may be negatively correlated with

dispersal abilities (e.g. Olivieri & Berger, 1985; Venable &

Brown, 1988; Willson, 1993).

The heterogeneity of the habitat may also lead to more

complicated behaviours. Using an individual-based mod-

el, Savill & Hogeweg (1998) showed that the evolution of

dispersal distance may lead to a coexistence of short and

long distance dispersal strategies. This polymorphism is

because of the fact that they assumed that dispersal

occurred in a two-dimensional lattice with a boundary.

Individuals which cross the boundary are lost from

the system. Therefore, near the boundary, the shorter the

dispersal distance, the fewer offspring will be lost. In the

centre of the lattice long distance dispersal is selected to

avoid kin competition. Therefore, the result is a conse-

quence of the cost of dispersal being variable in space.

Habitat heterogeneity may also arise from other pro-

cesses. First, the uneven spatial distribution of individuals

(resulting, e.g. from various extinction regimes) may

generate different types of landscapes. If individuals are

clustered, long-distance dispersers will have a higher

chance (relative to short-distance dispersers) to settle in

empty sites. This may select for longer dispersal distance

than in homogeneous landscapes. Secondly, spatial het-

erogeneity may also emerge from intrinsic heterogeneity

in the quality of the habitat. If there is spatial autocorre-

lation in this quality, long distance dispersers will, on

average, reach unsuitable habitats, introducing a cost to

long-distance dispersal from any habitat. Such extra costs

of dispersal are likely to select for lower average dispersal

distance (Hovestadt et al., 2001, Fig. 4). On the other

hand, this cost of dispersal reaches a maximum below 1 at

moderately large distances. From our results we then

expect that there will be long distance dispersal. The same

result was observed in Hovestadt et al.’s simulations. The

occurrence of local adaptation will have similar conse-

quences. In the latter case, dispersal (the dispersal

probability and the distribution of dispersal distances)

may feed-back on the degree of local adaptation. Dispersal

could either prevent (Slatkin, 1987) or enhance (Gandon

et al., 1996) local adaptation depending on the temporal

variability of the environments and other factors.

Concluding remarks

We have defined a set of tools to find the optimal dispersal

distribution as a function of the cost of dispersal distance.

With this approach, any cost function and any dispersal

distribution may be considered. This general model has

been analysed in order to explore the effects of (1) the cost

of dispersal (2) the deme size and (3) the shape of the

habitat under a limited number of constraints. The same

methods, however, could be used to study the evolution

of dispersal distance under more specific constraints. For

example, one may derive the ES allocation among two

types of offspring that have different dispersal abilities

(e.g. Harada, 1999), as may result from seed heteromor-

phism (e.g. Venable, 1985). Specific modes of dispersal

may impose constraints on the form of dispersal distri-

butions, and the possible distributions under such
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constraints may be characterized by some parameters (e.g.

Neubert et al., 1995; Tufto et al., 1997). Then, the optimal

strategy will be found by considering a fitness measure

that is a weighted average of the selection pressures at

each distance, where the weights are determined by

the effects of each parameter on dispersal at a given

distance. Such analyses would be of interest given data

on cost of dispersal, and a known mechanism of dispersal.

Although one can identify constraints on the shape of a

dispersal distribution, imposed by specific dispersal

mechanisms, the mechanisms of dispersal in natural

populations of a given species are probably a mixture of

several of the processes considered in mechanistic models

of dispersal. We would need more knowledge of actual

constraints in such cases. Renewed interest for analyses

of dispersal distributions (e.g. Clark et al., 1999, Stoyan &

Wagner 2001) may provide some advances in this

direction.

The above analysis, however, relies on the assumption

that the habitat is homogeneous. Currently, no exact

condition for convergence stability (comparable with eq.

3) is available for spatially and temporally heterogeneous

populations evolving under localized dispersal. Some

insights may be obtained from analytical expressions

derived from pair-approximations but these expressions

cannot be interpreted with the same confidence as exact

expressions without thorough checking by simulation

(see, e.g. multiple reviews in Dieckmann et al., 2000).

Therefore, individual based simulations are required to

provide a better understanding of the multiplicity of

factors acting on the evolution of dispersal distributions.

Our model could serve as a reference against which the

importance of the additional factors included in these

simulations can be evaluated.
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Appendix

Selection on different kinds of mutants

The coevolution of dispersal probabilities at all distances

is evaluated by first considering mutants which affect one

dispersal probability dx;y and affect proportionally all

other dispersal probabilities. By definition, such mutants

do not affect the relative dispersal probabilities f j among

genes that do not disperse at distance D. As noted in the

main text, the mutant and resident strategies can each be

described by a single variable z. This variable is the

dispersal probability at distance D. The dispersal probab-

ility at any other distance j is ð1 � zÞf j. In this case the

relative numbers of juveniles from deme i in competition

for deme j are

gi!jðzi;DÞ ¼
ð1 � ci�jÞdi�jðzÞ ¼ ð1 � cDÞzD if i� j = D

ð1 � ci�jÞf i�jð1 � zDÞ otherwise.

	
ð5Þ

Selection on more general forms of mutational effects on

the dispersal distribution can then be measured as

follows. For each distance D, the restricted form of

mutants considered above defines one vector of muta-

tional effects eD. The vectors ðe0; . . .Þ form a basis in

which any more general form of mutant can be described

by a linear combination
P

D qDeD. Since differentiation is

a linear operation, the fitness measure / for any mutant

can then be written as
P

D qD/DðzaÞ. The strategy da is

stable against any mutant only if / � 0 for any mutant.

Thus, the stability of da can be deduced from the values

of /DðzaÞ for the more restricted form of mutants. In

particular, for any D;D 0 such that da
D > 0 and da

D0 > 0, it

requires that /D ¼ /D0 ¼ 0.

Finding the ES dispersal distribution

Fourier analysis
We use Fourier analysis as in earlier work; see Rousset &

Billiard (2000) and the electronic Appendix of Gandon &

Rousset (1999) for general background and related

results. Consider two vectors q � ðqx; qyÞ and

q � ðqx; qyÞ. For any suitable function h let

FqðhÞ �
X

q

hðqÞe�q�q ð6Þ

be its Fourier transform in q, where 1 ¼
ffiffiffiffiffiffiffi
�1

p
and q � q is

simply the scalar product of the two vectors, so that

e�q�q ¼ e�qxqx e�qyqy . Sums over q are sums over all possible

vectorial distances on the lattice, qx ¼ 0; . . . ;nx � 1,

qy ¼ 0; . . . ;ny � 1. For any vector q, let h � hðqÞ �
2pðqx=nx;qy=nyÞ. For any suitable function h let

LjðhÞ �
1

n

X
q

hðhÞe��h�j ð7Þ

be its inverse Fourier transform in j. Let w qð Þ �P
q mqe�q�q be the characteristic function of the distribu-

tion of backward dispersal distance.

An algorithm giving the ESS
Here we give a relationship between the Fourier trans-

form of the dispersal distribution and some functions of

the costs at different distances. To get an expression only

in terms of the backward dispersal probabilities and of

their transform, we first consider the average cost paid by

dispersing juveniles,

�cc �
X

i

cidi: ð8Þ

It is shown in the Supplementary Appendix that an ES

dispersal distribution w will be a solution of the recursion

giving the next iteration distribution w0 as

w0ðqÞ ¼
1 � 1

Nn

� �P
q

1��cc
1�cq

mqe�q�q þ 1
Nn

P
q 6¼0

wðhÞwðq�hÞ
1�w2ðhÞ :

1 � 1
Nn

þ 1
Nn

P
q 6¼0

w2ðhÞ
1�w2ðhÞ

ð9Þ

Thus, one may seek the ESS by iterating this recursion.

Note that �cc and the ms must be recomputed at each
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iteration. Convergence was checked by examination of

the /s. However, convergence of the recursion to the

solution is not guaranteed (it is not logically related to

evolutionary convergence stability). In practice, the

recursion is often found to diverge, but recursions that

converge are deduced from the above one: we consid-

ered recursions of the form w0ðqÞ ¼ ð1 � �Þ
wðqÞ þ ��(right hand part of the above equation), for

some suitable value of �.
This algorithm has the interesting property that if

dispersal is zero at some distance D at iteration t, it will be

zero at this distance at iteration t þ 1. Thus one may

constrain the set of possible dispersal distributions by

imposing an initial distribution with strictly nonzero

dispersal within and only within this set. The algorithm

will then converge to the optimal distribution given the

constraint of zero dispersal outside this set, i.e. the

distribution with /D ¼ 0, or zero dispersal and /D < 0,

within this set. On the other hand, it is necessary to

initiate the algorithm with nonzero dispersal everywhere

(e.g. an island mode of dispersal) in order to be sure to

obtain the unconstrained optimum.
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