
Suppl	Info	for	Kouyos	et	al.	PRSB	2014:	The	path	of	least	resistance.....	

Supplementary	Tables	1	
	2	
Supplementary	Table	1:	Experimental	Evidence	for	Treatment	Strength	3	
Note:	This	table	was	created	by	performing	a	systematic	search	on	PubMed	using	the	terms	4	
“Evolution	of	Resistance	Dose”,	“Evolution	of	Resistance	Chemotherapy”,	”Resistance	5	
Emergence	Dose”,	“Low	Dose	Treatment	Resistance.”	Several	other	studies	not	found	using	6	
these	terms	are	included	as	well.	Note	that	the	column	“General	Direction	of	Evidence”	always	7	
refers	to	the	direction	of	evidence	(more	moderate	or	more	aggressive)	relative	to	the	baseline	8	
treatment	chosen	in	the	source.		9	
Pathogen	 Treatment	range	 Outcome Source	 General	

Direction	of	
Evidence	

In	vivo	evidence	(human) 	
S.	aureus,	S.	
pneumonia,	
H.	influenza	

Long‐term,	low‐dose	
azithromycin	(in	CF	

patients)	

Reduction	of	colonization	by	
all	pathogens	tested,	but	
increased	macrolide	
resistance	in	S.	aureus	
(clinically	insignificant)	

[1] 	Not	long‐term,	
low	dose	
although	

evidence	weak.		
Short‐

term/high‐dose	
not	tested,	so	
evidence	could	

go	either	
direction.	

S.	
pneumoniae	

Low	daily	dose	and	
long	duration	of	oral	

β‐lactam	

Dosing	strategy	was	
associated	with	carriage	of	
penicillin‐resistant	S.	

pneumoniae 

[2] Mixed	evidence:
both	low	dose	
and	long	

duration	were	
associated	with	
resistance	

Community‐
Acquired	
Pneumonia	

(S.	
pneumonia,	
H.	influenza,	

etc.)	

High‐dose,	short‐
course	levofloxacin	
vs.	longer	duration,	

lower	dose	
(Fluoroquinolones)	

High‐dose,	short	course	just	
as	effective	as	long	duration	
lower	dose,	and	may	prevent	
resistance	emergence	better	
due	to	hastened	bacterial	

demise	

[3] Aggressive	
Treatment	(high	
dose,	short	
course)	

Ventilator‐
Associated	
pneumonia	

(P.	
aeruginosa,	
A.	baumannii,	
E.	coli,	etc.)	

8	day	vs.	15	day	
duration	of	regimen	
decided	by	physician	

Similar	clinical	efficacy	for	
both	durations.	Shorter	
treatment	had	higher	

infection	recurrence,	but	
recurrent	infections	less	
likely	to	be	resistant.	

[4]
	

Moderate	
Treatment	
(shorter	

duration	better	
in	terms	of	
resistance)	

Oral	strepto‐
coccus	

3‐day	vs.	7‐day	
treatment	with	
amoxicillin	

3‐day	and	7‐day	treatment	
courses	yielded	similar	

clinical	efficacy	and	induced	
similar	selection	of	reduced‐
susceptibility	streptococci,	
suggesting	selection	can	
happen	over	very	short	

durations	

[5] Mixed	evidence

Hepatitis	C	 Varying	doses	of	IFN Patients	administered	
higher	doses	of	IFN	had	

[6] Aggressive	
Treatment	(high	
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reduced	the	diversity	of	
quasi‐species	present,	

though	persistent	strains	
survived	in	all	patients	

dose)

HIV	 Once	Daily	and	Twice	
Daily	doses	of	daily	
lopinavir/ritonavir	in	
combination	with	

NRTIs	

No	difference	in	resistance	
evolution	between	

treatment	groups,	with	
better	adherence	and	no	
other	adverse	outcomes	
among	once‐daily	dosed	

individuals	

[7] Neutral	
(although	
adherence	
advantage	to	
moderate	
treatment)	

Bacteriuria	 Oxolinic	Acid	in	1g	
and	2g	per	day	doses	
in	a	previous	study,	
showed	1	ineffective	
and	2	difficult	to	
tolerate	due	to	side	
effects	so	tried	

1.5g.day	

Limited	clearance	plus	
resistance	emergence	and	

side	effects,	so	not	
recommended	to	lower	dose	

below	2g	

[8] Aggressive	
Treatment	(high	

dose)	

HIV	 Lopinavir/ritonavir	
combination	therapy	
once	daily	vs.	twice	

daily	

Similar	low	emergence	of	
resistance	with	both	
treatments,	better	

adherence	with	once	daily	

[9] Neutral	
(although	
adherence	
advantage	to	
moderate	
treatment)	

HIV	 Different	adherence	
levels	to	HAART	

Worse	adherence	was	
associated	with	worse	

outcome	and	emergence	of	
drug	resistance	

[10] Aggressive	
Treatment	(here	
equivalent	to	

good	adherence)	
HIV	 A	number	of	

predictors	of	
resistance	mutations	

High	but	imperfect	
adherence	and	perfect	
adherence,	but	low	drug	
concentration	were	
associated	with	

development	of	resistance	

[11] Aggressive	
Treatment	if	
perfect,	
otherwise	
low/no	
treatment	

HIV	 Different	levels	of	
adherence	to	HAART	

High	but	imperfect	
adherence	associated	with	
resistance	acquisition	

[12] Aggressive	
Treatment	if	
perfect,	
otherwise	
low/no	
treatment	

TB	 Meta‐analysis	of	
different	durations	
and	intermittency	of	
rifampin	treatment	

Regimes	that	used	rifampin	
for	a	short	duration	(1‐2	vs.	
5‐7	months)	had	higher	
rates	of	resistance	

acquisition;	non‐significant	
increase	observed	for	higher	

durations	(8+	months)	

[13] Mixed	evidence	

In	vivo	evidence	(animal	model) 	
Salmonella	
spp.,	E.	coli	

low‐level	continuous,	
pulse,	and	no	
antimicrobial	

Cephalothin‐resistant	E.	coli	
under	pulse	strategy	with	
chlortetracycline,	Otherwise	

no	difference	between	
regimens	

[14] Mixed	Evidence
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Plasmodium	
chabaudi	

Weak	and	Strong	drug	
pressure,	

Pyrimethamine	
curative	

chemotherapy	

Weaker	drug	pressure	
reduced	competitive	release	

of	resistant	strains,	
resistance	remained	under	
positive	selection	for	longer	
than	expected	given	drug	

half‐life	

[15–17]	 Moderate	
treatment	
(lower	dose)	

S.	
pneumoniae	

Wide	range	of	time	
that	drug	

concentration	>MIC	

Insufficient	treatments	
selected	for	more	resistant	

strains	

[18] Aggressive	
Treatment	(high	

dose)	
P.	aeruginosa	 Range	of	dosing	

regimens,	beta‐
lactams	

Resistance	only	emerged	
when	T>MIC	greater	than	
50%	of	dosing	interval	

	

[19]*	 Moderate	
Treatment	
(shorter	

duration	above	
MIC)	

P.	aeruginosa	 Range	of	dosing	
regimens	of	

aminoglycosides	

Suboptimal	dosing	may	lead	
to	resistance	through	

reduced	uptake	of	drug	by	
bacteria	

[20,21]*	 Aggressive	
Treatment	(high	

dose)	

Bacteroides	
fragilis,	

Enterobacter	
cloacae	

Range	of	dosing	with	
ceftizoxime	(beta‐

lactam)	

No	increased	resistance	in	B.	
fragilis	with	differing	

dosage,	fAUC‐to‐MIC	ratio	is	
the	pharmacodynamic	index	

best	correlated	to	
emergence	of	resistance	in	E.	
cloacae,	and	ratio	of	1000	

needed	to	prevent	
emergence	of	resistance		

[22] Mixed	evidence

S.	aureus	 Various	doses	of	
levofloxacin	

Bacteria	lost	susceptibility	
when	drug	concentrations	at	
the	site	of	infection	were	in	
mutant	selection	window	

[23] Aggressive	
Treatment	(high	

dose)	

Plasmodium	
Chabaudi	

Virulent	and	avirulent	
strains	treated	for	

short	or	long	duration	

Sub‐optimal	treatment	may	
select	for	virulent	strains	

[24] Aggressive	
Treatment	(high	

dose)	
Plasmodium	
Chabaudi	

Treatment	or	no	
treatment	

Treating	mice	coinfected	
with	sensitive	and	resistant	
strains	allowed	transmission	

of	resistance	

[25] Moderate	
Treatment	
(lower	dose)	

Enterobacteri
aceae	

Ciprofloxacin,	
placebo,	1.5	or	15	mg	

per	kg	body	
weight/day	for	5	days	

Higher	doses	were	
associated	with	more	

resistant	strains	found	in	
fecal	samples	

[26] Moderate	
Treatment	
(lower	dose)	

Enterococcus	
faecalis	

3	different	doses	of	
linezolid	over	

different	durations	

Resistance	increased	with	
decreasing	dose	but	
increasing	duration	

[27] Aggressive	
Treatment	
(higher	dose,	
shorter	
duration)	

Enterobacter	
cloacae	

Differing	doses	of	
ceftazidime	at	

frequencies	of	6,	12	or	
24	hrs	for	18	days	

Moderate	doses	
administered	frequently	
were	most	correlated	with	
resistance	emergence	

[28] Aggressive	
Treatment	(high	

dose)	

S.	aureus,	E.	
faecium	

Four	doses	of	
Linezolid	over	72	hrs	

Resistance	development	
potentially	highest	when	a	

[29] Aggressive	
Treatment	(high	



Suppl	Info	for	Kouyos	et	al.	PRSB	2014:	The	path	of	least	resistance.....	

constant	concentration	near	
the	MIC	maintained		

dose)

S.	Aureus	 Varying	
concentrations	of	
vancomycin	in	vitro	
and	in	vivo	(rabbit	

model)	

Both	experiments	confirmed	
that	the	only	way	to	
maintain	vancomycin	

susceptibility	was	to	keep	
concentrations	above	the	

MPC	

[30] Aggressive	
Treatment	(high	

dose)	

E.	coli	 Varying	
concentrations	of	

cefotaxime	

Peak	resistance	at	low	
concentration,	second	peak	
at	higher	concentrations	

[31] Mixed	evidence

Klebsiella	
pneumonia	&	
Enterobacteri

aceae	

Low	and	high	doses	of	
cefquinome	(targeting	

Klebsiella)	

Both	high	and	low	doses	
cured	Klebsiella,	but	high	

doses	resulted	in	
amplification	of	resistance	

Enterobacteriaceae	

[32] Moderate	
Treatment	
(lower	dose)	

Malaria	 Varying	doses	of	an	
artemisinin	derivative	

Aggressive	treatment	of	
mixed	infections	provided	
advantage	to	resistant	

mutants	without	benefit	to	
host	

[33] Evidence	against	
aggressive	
treatment	

In	vitro	evidence 	

P.		
aeruginosaa,b,	
Klebsiella	

pneumoniaea,	
E.	colia,	and	
S.aureusa,b,	S.	
pneumoniaec	

Fluoroquinolones	 High	doses	of	
Fluoroquinolones	are	good	

for	minimizing	the	
development	of	resistant	

strains	

[34–36]*	 Aggressive	
Treatment	(high	

dose)	

E.	coli	 Ciprofloxacin Neither	time	with	dose	>	
MPC	nor	maximum	

concentration	were	singly	
correlated	with	preventing	
resistance	emergence.	For	
wild‐type	strains,	AUC/MPC	
ratio	൒22	was	predictive	of	
prevention	of	resistant	
mutant	emergence	

[37] Aggressive	
Treatment	
(higher	

AUC/MPC	ratio)	

K.	
4neumonia,	S.	

aureus	

Range	of	doses	of	
garenoxin,	
ciprofloxacin	

Peak	of	resistant	
populations	at	intermediate	
drug	doses:	inverted	“U‐

shaped”	curve	

[38] Aggressive	
Treatment	(high	

dose)	

C.	albicans	 Fluconazole	 Frequent	dosing	prevented	
de	novo	resistance	

emergence,	while	prolonged	
sub‐MIC	doses	gave	rise	to	

resistant	strains	

[39] Aggressive	
Treatment	

(frequent	dosing	
above	a	certain	

level)	
Mycobacteria	 Azithromycin	 Subtherapeutic	treatment	

for	more	than	3	days	led	to	
many‐fold	increase	in	

expression	of	mutation	that	
codes	for	efflux	pump	

[40] Aggressive	
Treatment	(high	

dose)	

E.	coli	and	S.	 Sub‐MIC	dose	of	 Reduced	rate	of	growth	of	 [41] Aggressive	
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enterica	 tetracyclin	 susceptible	strain	markedly	
with	no	effect	on	resistant	

strain	

Treatment	(high	
dose)	

E.	coli	 Cefotaxime	 Emergence	of	resistance	not	
only	increased	dependent	on	

time	spent	in	mutant	
selection	window,	but	also	
on	previous	antibiotic	
concentrations	(post‐
antibiotic	effect)	

[42] Aggressive	
Treatment	(dose	
to	get	out	of	

mutant	selection	
window	but	also	
dependent	on	
previous	
exposure)	

C.	albicans	 Fluconazole	 Emergence	of	resistance	
correlates	with	time	below	
MIC,	more	frequent	dosing	

prevents	resistance	

[39] Aggressive	
Treatment	
(higher	and	
more	frequent	

dosing)	
M.	

tuberculosis	
Rifampicin	 Higher	doses	prevent	

emergence	of	resistance	
[43] Aggressive	

Treatment	(high	
dose)	

P.	
Aeruginosa,	
A.	baumannii	

Various	doses/times	
of	doripenem	

Low‐dose,	short	duration	
yielded	the	most	resistance	
mutants,	though	repeated	
doses	somewhat	alleviated	

this	effect.	

[44] Aggressive	
Treatment	(high	
dose,	longer	
duration)	

P.	aeruginosa	 Colistin	
Methanesulphonate	in	
8,12,24	hr	dosage	

intervals	

All	intervals	yielded	the	
same	killing	rate,	but	the	8hr	
was	best	at	minimizing	

resistance	

[45] Aggressive	
Treatment	

(more	frequent	
dosing)	

P.	aeruginosa	 Varying	C(min):MIC	
ratios	of	meropenem	

Higher	ratios	associated	
with	less	resistance	

[46] Aggressive	
Treatment	(high	

dose)	
S.	

pneumoniae	
Moxifloxacin	below	
MIC,	between	MIC	
and	MPC,	above	MPC	

Samples	treated	with	
concentrations	between	MIC	
and	MPC	developed	most	

resistance	

[47] Aggressive	
Treatment	(high	

dose)	

S.	
pneumoniae	

Benzylpenicillin	at	
various	

concentrations	
leading	to	different	
T>MICs	in	a	mixed	

solution	of	
susceptible,	

intermediate	and	
resistant	strains	

Doses	targeted	at	
susceptible	strains	yielded	

more	resistance	

[48] Aggressive	
Treatment	(high	

dose)	

TB	 Varying	levels	of	
adherence	with	in	
vitro	susceptible,	
rifampin‐	and	

isoniazid‐	resistant	
strains,	and	in	silico	

simulations	

Treatment	failure	only	
occurred	when	non‐

adherence	was	greater	than	
60%.	In	silico	simulations	
predicted	that	resistance	
would	emerge	due	to	

pharmacokinetic	variability	

[49] Mixed	evidence

Bacteria	 Range	of	evidence	 First	dose	exposure	
determines	outcome	of	

infection,	therapy	should	be	

[50] and	
referenc

es	

Aggressive	
Treatment	(high	
dose	but	short	
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initiated	as	soon	as	possible	
and	for	as	short	a	duration	

as	possible,	avoid	
suboptimal	dosing	

therein	 duration)

S.	
Pneumoniae	

Range	of	
concentrations	of	

amoxicillin,	cefixime,	
cefuroxime,	and	
cefotaxime	

Antibiotics	at	lower	levels	
select	for	low	level	

resistance,	at	intermediate	
levels	potentially	for	high‐
level	resistance,	and	at	high	
enough	levels	may	preclude	

resistance	

[51]	
Aggressive	
Treatment,	if	
aggressive	
enough	

*Reviewed	in	Roberts	et	al.		[52]	1	
	2	
	3	
Supplementary	Table	2:	Theoretical	Models	of	Resistance	Emergence	4	

Theoretical/mathematical	models Source	 Direction	of	
Evidence	

Bacteria	 Short	Duration	 Immunity	is	an	important	
mediating	factor	in	

determining	duration	of	
treatment	

[53]	 Neutral	
(immunity	
important)	

Influenza	 Adaptive	strategy	
beginning	with	
conservative	

treatment	followed	
by	scale‐up	

Final	size	of	pandemic	
minimized	and	outbreaks	
of	resistant	infections	

prevented	

[54]	 Moderate	
Treatment	

scaled	up	over	
time	

HIV	 ARVs	 High	selection	pressure	
expected	during	

antiretroviral	therapy	can	
cause	recombination	to	
favor	evolution	of	

resistance	under	a	wide	
range	of	population	sizes.	

[55]	 Neutral	
(resistance	
always	
possible)	

Any	–	direct	
and	vector‐
borne	

Spatial	distribution	
of	treatment	

Critical	patch	sizes	of	
treated	areas	can	be	

found	that	minimize	the	
spread	of	resistance	

[56]	 Neutral	(patch‐
size	

dependent)	

HIV	 Transient	
monotherapy	

Even	transient	increases	
in	subpopulations	of	
common	mutants	are	
associated	with	

accelerated	appearance	of	
further	rarer	mutations,	
and	can	be	caused	by	
fluctuating	treatment	

[57]	 Aggressive	
Treatment	
(consistent	–	
no	fluctuation)	

Malaria	 Model	of	low	to	
high	doses	of	
Mefloquine	

Model	predicts	lower	
dose	leads	to	more	rapid	
resistance	evolution	

[58]	
	

Aggressive	
Treatment	
(high	dose)	

Helminths	 Model	of	a	range	of	
dosing	strategies	

Under‐dosing	can	
promote	or	impede	

[59]	 Either
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resistance	under	different	
circumstances	

TB	 Monte	Carlo	
simulations	of	

moxifloxacin	doses	

Highest	dose	best	for	
wiping	out	drug	

resistance,	tolerability	
unknown,	

[60]	 Aggressive	
Treatment	
(high	dose)	

Bacterial	
infections	

Proportion	of	
population	uses	
antibiotics,	
antibiotic	use	

discouraged	when	
resistance	levels	are	

high	

Niche‐forming	can	occur,	
maintaining	

polymorphism	in	
situations	when	it	would	

not	be	expected	

[61]	 Moderate	
(avoid	AB	use	

when	
resistance	is	

high)		

HIV	 Structured	
treatment	

interruptions	

Interruption	strategies	w	
short‐term	suppression	
do	not	guarantee	long‐
term	clinical	benefit	

[62]	 Interrupted	
Treatment	not	
beneficial	

P.	
aeruginosa	

Range	of	dosing	
regimens	of	

fluoroquinolones	

Highest	dose	most	
effective	in	reducing	both	
total	bacterial	load	and	
resistant	subpopulation	

[63]	 Aggressive	
Treatment	
(high	dose)	

Bacteria	 Time	course	of	
antibiotic	

concentration	(e.g.	
patient	adherence)	

S. Emergence	of	
resistance	is	
maximal	at	an	
intermediate	

rate	of	antibiotic‐
mediated	killing	

II)	Large,	infrequent	
doses	can	be	

advantageous	if	the	first	
dose	kills	intermediately	
resistant	subpopulation.	

[64]	 Aggressive	
Treatment	
(high	dose)	

S.	
pneumoniae	

Dose	distribution	of	
beta‐lactams	in	
population	of	
patients	

Limiting	beta‐lactam	use	
while	increasing	the	doses	
reduces	the	prevalence	of	
resistance,	but	selects	for	
higher	levels	of	resistance	

[65]	 Aggressive	
Treatment	
(high	dose)	

TB	 Prophylaxis	with	
isoniazid	

Antibiotic	prophylaxis	
gives	resistant	strains	
exclusive	access	to	hosts	
and	therefore	strongly	
selects	for	resistance	

[66]	 Moderate	
(prophylaxis	

can	be	
dangerous)	

Bacteria	 Varying	dosages	
and	durations	

High‐dose,	full‐term	
antimicrobial	

chemotherapy	maximizes	
cure	rate	and	minimizes	
de	novo	resistance	

acquisition	

[67]	 Aggressive	
Treatment	
(high	dose,	

long	duration)	
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Malaria	 Varying	drug	
efficacy	and	
duration	of	

treatment	(model	
based	on	absolute	

fitness)	

High	efficacy	and	long	
duration	of	drug	

treatment	delays	the	
emergence	of	drug	

resistance	

[68]	 Aggressive	
Treatment	
(high	dose,	

long	duration)	

	1	
	 	2	
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