1 **Supplementary Tables**

2

3 **Supplementary Table 1: Experimental Evidence for Treatment Strength**

4 *Note: This table was created by performing a systematic search on PubMed using the terms*

5 "Evolution of Resistance Dose", "Evolution of Resistance Chemotherapy", "Resistance

- 6 Emergence Dose", "Low Dose Treatment Resistance." Several other studies not found using
- 7 these terms are included as well. Note that the column "General Direction of Evidence" always
- 8 refers to the direction of evidence (more moderate or more aggressive) relative to the baseline

9 treatment chosen in the source. **m** . .

Pathogen	Treatment range	Outcome	Source	General Direction of Evidence
	In vivo evidence	(human)		
S. aureus, S. pneumonia, H. influenza	Long-term, low-dose azithromycin (in CF patients)	Reduction of colonization by all pathogens tested, but increased macrolide resistance in S. aureus (clinically insignificant)	[1]	Not long-term, low dose although evidence weak. Short- term/high-dose not tested, so evidence could go either direction.
S. pneumoniae	Low daily dose and long duration of oral β -lactam	Dosing strategy was associated with carriage of penicillin-resistant S. pneumoniae	[2]	Mixed evidence: both low dose and long duration were associated with resistance
Community- Acquired Pneumonia (S. pneumonia, H. influenza, etc.)	High-dose, short- course levofloxacin vs. longer duration, lower dose (Fluoroquinolones)	High-dose, short course just as effective as long duration lower dose, and may prevent resistance emergence better due to hastened bacterial demise	[3]	Aggressive Treatment (high dose, short course)
Ventilator- Associated pneumonia (P. aeruginosa, A. baumannii, E. coli, etc.)	8 day vs. 15 day duration of regimen decided by physician	Similar clinical efficacy for both durations. Shorter treatment had higher infection recurrence, but recurrent infections less likely to be resistant.	[4]	Moderate Treatment (shorter duration better in terms of resistance)
Oral strepto- coccus	3-day vs. 7-day treatment with amoxicillin	3-day and 7-day treatment courses yielded similar clinical efficacy and induced similar selection of reduced- susceptibility streptococci, suggesting selection can happen over very short durations	[5]	Mixed evidence
Hepatitis C	Varying doses of IFN	Patients administered higher doses of IFN had	[6]	Aggressive Treatment (high

T				
		reduced the diversity of		dose)
		quasi-species present,		
		though persistent strains		
11117		survived in all patients	[7]	NT - 1
HIV	Once Daily and Twice	No difference in resistance	[7]	Neutral
	Daily doses of daily	evolution between		(although
	lopinavir/ritonavir in	treatment groups, with		adherence
	combination with	better adherence and no		advantage to
	NRTIs	other adverse outcomes		moderate
		among once-daily dosed		treatment)
		individuals		
Bacteriuria	Oxolinic Acid in 1g	Limited clearance plus	[8]	Aggressive
	and 2g per day doses	resistance emergence and		Treatment (high
	in a previous study,	side effects, so not		dose)
	showed 1 ineffective	recommended to lower dose		
	and 2 difficult to	below 2g		
	tolerate due to side			
	effects so tried			
	1.5g.day			
HIV	Lopinavir/ritonavir	Similar low emergence of	[9]	Neutral
	combination therapy	resistance with both		(although
	once daily vs. twice	treatments, better		adherence
	daily	adherence with once daily		advantage to
				moderate
				treatment)
HIV	Different adherence	Worse adherence was	[10]	Aggressive
	levels to HAART	associated with worse		Treatment (here
		outcome and emergence of		equivalent to
		drug resistance		good adherence)
HIV	A number of	High but imperfect	[11]	Aggressive
	predictors of	adherence and perfect		Treatment if
	resistance mutations	adherence, but low drug		perfect,
		concentration were		otherwise
		associated with		low/no
		development of resistance		treatment
HIV	Different levels of	High but imperfect	[12]	Aggressive
	adherence to HAART	adherence associated with		Treatment if
		resistance acquisition		perfect,
				otherwise
				low/no
				treatment
TB	Meta-analysis of	Regimes that used rifampin	[13]	Mixed evidence
	different durations	for a short duration (1-2 vs.	_	
	and intermittency of	5-7 months) had higher		
	rifampin treatment	rates of resistance		
	-	acquisition; non-significant		
		increase observed for higher		
		durations (8+ months)		
	In vivo avidonao (ani	mal model)		
	In vivo evidence juni			
Salmonella	low-level continuous,	Cephalothin-resistant E. coli	[14]	Mixed Evidence
Salmonella spp., E. coli		Cephalothin-resistant E. coli under pulse strategy with	[14]	Mixed Evidence
	low-level continuous,	under pulse strategy with chlortetracycline, Otherwise	[14]	Mixed Evidence
	low-level continuous, pulse, and no	under pulse strategy with	[14]	Mixed Evidence

Dlag	Maals as J Church 1	Maalson Jone	[1] 47]	M - J +
Plasmodium chabaudi	Weak and Strong drug	Weaker drug pressure	[15–17]	Moderate
cnabauai	pressure, Pyrimethamine	reduced competitive release of resistant strains,		treatment (lower dose)
	curative	resistance remained under		(lower ubse)
	chemotherapy	positive selection for longer		
	enemotierapy	than expected given drug		
		half-life		
<i>S.</i>	Wide range of time	Insufficient treatments	[18]	Aggressive
pneumoniae	that drug	selected for more resistant		Treatment (high
	concentration >MIC	strains		dose)
P. aeruginosa	Range of dosing	Resistance only emerged	[19]*	Moderate
	regimens, beta-	when T>MIC greater than		Treatment
	lactams	50% of dosing interval		(shorter
				duration above
P. aeruginosa	Range of dosing	Suboptimal dosing may lead	[20,21]*	MIC) Aggressive
i . uci ugiilosu	regimens of	to resistance through	[20,21]	Treatment (high
	aminoglycosides	reduced uptake of drug by		dose)
	unningiycosiucs	bacteria		40503
Bacteroides	Range of dosing with	No increased resistance in B.	[22]	Mixed evidence
fragilis,	ceftizoxime (beta-	fragilis with differing		
Enterobacter	lactam)	dosage, fAUC-to-MIC ratio is		
cloacae		the pharmacodynamic index		
		best correlated to		
		emergence of resistance in E.		
		cloacae, and ratio of 1000		
		needed to prevent		
		emergence of resistance		
S. aureus	Various doses of	Bacteria lost susceptibility	[23]	Aggressive
	levofloxacin	when drug concentrations at		Treatment (high
		the site of infection were in		dose)
Plasmodium	Virulent and avirulent	mutant selection window Sub-optimal treatment may	[24]	Aggressive
Chabaudi	strains treated for	select for virulent strains	[24]	Treatment (high
Ghubuuui	short or long duration			dose)
Plasmodium	Treatment or no	Treating mice coinfected	[25]	Moderate
Chabaudi	treatment	with sensitive and resistant	[20]	Treatment
0.10.0 4444		strains allowed transmission		(lower dose)
		of resistance		
Enterobacteri	Ciprofloxacin,	Higher doses were	[26]	Moderate
aceae	placebo, 1.5 or 15 mg	associated with more		Treatment
	per kg body	resistant strains found in		(lower dose)
	weight/day for 5 days	fecal samples		
Enterococcus	3 different doses of	Resistance increased with	[27]	Aggressive
faecalis	linezolid over	decreasing dose but		Treatment
	different durations	increasing duration		(higher dose,
				shorter
Entonobasta	Difforing dagag of	Madamata dagaa	[20]	duration)
Enterobacter cloacae	Differing doses of ceftazidime at	Moderate doses administered frequently	[28]	Aggressive
cioucue	frequencies of 6, 12 or	were most correlated with		Treatment (high dose)
	24 hrs for 18 days	resistance emergence		uosej
	<u></u>	i constante ennei gente		1
S. aureus, E.	Four doses of	Resistance development	[29]	Aggressive

		constant concentration near the MIC maintained		dose)
S. Aureus	Varying concentrations of vancomycin <i>in vitro</i> and <i>in vivo</i> (rabbit model)	Both experiments confirmed that the only way to maintain vancomycin susceptibility was to keep concentrations above the MPC	[30]	Aggressive Treatment (high dose)
E. coli	Varying concentrations of cefotaxime	Peak resistance at low concentration, second peak at higher concentrations	[31]	Mixed evidence
Klebsiella pneumonia & Enterobacteri aceae	Low and high doses of cefquinome (targeting Klebsiella)	Both high and low doses cured Klebsiella, but high doses resulted in amplification of resistance Enterobacteriaceae	[32]	Moderate Treatment (lower dose)
Malaria	Varying doses of an artemisinin derivative	Aggressive treatment of mixed infections provided advantage to resistant mutants without benefit to host	[33]	Evidence against aggressive treatment
	In vitro evide	nce		
P. aeruginosa ^{a,b} , Klebsiella pneumoniae ^a , E. coli ^a , and S.aureus ^{a,b} , S. pneumoniae ^c	Fluoroquinolones	High doses of Fluoroquinolones are good for minimizing the development of resistant strains	[34–36]*	Aggressive Treatment (high dose)
E. coli	Ciprofloxacin	Neither time with dose > MPC nor maximum concentration were singly correlated with preventing resistance emergence. For wild-type strains, AUC/MPC ratio ≥22 was predictive of prevention of resistant mutant emergence	[37]	Aggressive Treatment (higher AUC/MPC ratio)
K. 4neumonia, S. aureus	Range of doses of garenoxin, ciprofloxacin	Peak of resistant populations at intermediate drug doses: inverted "U- shaped" curve	[38]	Aggressive Treatment (high dose)
C. albicans	Fluconazole	Frequent dosing prevented de novo resistance emergence, while prolonged sub-MIC doses gave rise to resistant strains	[39]	Aggressive Treatment (frequent dosing above a certain level)
Mycobacteria	Azithromycin	Subtherapeutic treatment for more than 3 days led to many-fold increase in expression of mutation that codes for efflux pump	[40]	Aggressive Treatment (high dose)
E. coli and S.	Sub-MIC dose of	Reduced rate of growth of	[41]	Aggressive

ontoriaa	to tra gualin	augaantible strain markedly		Treatment (high
enterica	tetracyclin	susceptible strain markedly with no effect on resistant		Treatment (high dose)
		strain		uosej
E. coli	Cefotaxime	Emergence of resistance not	[42]	Aggressive
<i>L. CO</i> 11	Gerotaxiiiie	only increased dependent on	[42]	Treatment (dose
		time spent in mutant		to get out of
		selection window, but also		mutant selection
				window but also
		on previous antibiotic		
		concentrations (post-		dependent on
		antibiotic effect)		previous
C alleianna	[]	F	[20]	exposure)
C. albicans	Fluconazole	Emergence of resistance	[39]	Aggressive
		correlates with time below		Treatment
		MIC, more frequent dosing		(higher and
		prevents resistance		more frequent
	D (4)		E + 01	dosing)
М.	Rifampicin	Higher doses prevent	[43]	Aggressive
tuberculosis		emergence of resistance		Treatment (high
			F 7	dose)
Р.	Various doses/times	Low-dose, short duration	[44]	Aggressive
Aeruginosa,	of doripenem	yielded the most resistance		Treatment (high
A. baumannii		mutants, though repeated		dose, longer
		doses somewhat alleviated		duration)
D i		this effect.	[45]	
P. aeruginosa	Colistin	All intervals yielded the	[45]	Aggressive
	Methanesulphonate in	same killing rate, but the 8hr		Treatment
	8,12,24 hr dosage intervals	was best at minimizing		(more frequent
P. aeruginosa	Varying C(min):MIC	resistance Higher ratios associated	[46]	dosing) Aggressive
1. uer uginosu	ratios of meropenem	with less resistance	[40]	Treatment (high
	radios of meropenem	with its resistance		dose)
S.	Moxifloxacin below	Samples treated with	[47]	Aggressive
pneumoniae	MIC, between MIC	concentrations between MIC	[]	Treatment (high
priorina	and MPC, above MPC	and MPC developed most		dose)
		resistance		uosej
S.	Benzylpenicillin at	Doses targeted at	[48]	Aggressive
pneumoniae	various	susceptible strains yielded	[10]	Treatment (high
phoamoniae	concentrations	more resistance		dose)
	leading to different			uobej
	T>MICs in a mixed			
	solution of			
	susceptible,			
	intermediate and			
	resistant strains			
ТВ	Varying levels of	Treatment failure only	[49]	Mixed evidence
	adherence with in	occurred when non-	[[[]]	
	vitro susceptible,	adherence was greater than		
	rifampin- and	60%. <i>In silico</i> simulations		
	isoniazid- resistant	predicted that resistance		
	strains, and <i>in silico</i>	would emerge due to		
	simulations	pharmacokinetic variability		
Bacteria	Range of evidence	First dose exposure	[50] and	Aggressive
		determines outcome of	referenc	Treatment (high
		infection, therapy should be	es	dose but short
		secon, merupy should be		acce satonoit

		initiated as soon as possible and for as short a duration as possible, avoid suboptimal dosing	therein	duration)
S. Pneumoniae	Range of concentrations of amoxicillin, cefixime, cefuroxime, and cefotaxime	Antibiotics at lower levels select for low level resistance, at intermediate levels potentially for high- level resistance, and at high enough levels may preclude resistance	[51]	Aggressive Treatment, if aggressive enough

*Reviewed in Roberts et al. [52]

Supplementa	ary Table 2: Theoretic	cal Models of Resistance Em	nergence	
	Theoretical/mathem	atical models	Source	Direction of Evidence
Bacteria	Short Duration	Immunity is an important mediating factor in determining duration of treatment	[53]	Neutral (immunity important)
Influenza	Adaptive strategy beginning with conservative treatment followed by scale-up	Final size of pandemic minimized and outbreaks of resistant infections prevented	[54]	Moderate Treatment scaled up over time
HIV	ARVs	High selection pressure expected during antiretroviral therapy can cause recombination to favor evolution of resistance under a wide range of population sizes.	[55]	Neutral (resistance always possible)
Any – direct and vector- borne	Spatial distribution of treatment	Critical patch sizes of treated areas can be found that minimize the spread of resistance	[56]	Neutral (patch- size dependent)
HIV	Transient monotherapy	Even transient increases in subpopulations of common mutants are associated with accelerated appearance of further rarer mutations, and can be caused by fluctuating treatment	[57]	Aggressive Treatment (consistent – no fluctuation)
Malaria	Model of low to high doses of Mefloquine	Model predicts lower dose leads to more rapid resistance evolution	[58]	Aggressive Treatment (high dose)
Helminths	Model of a range of dosing strategies	Under-dosing can promote or impede	[59]	Either

	1			
		resistance under different		
		circumstances	5 4 9 3	
ТВ	Monte Carlo	Highest dose best for	[60]	Aggressive
	simulations of	wiping out drug		Treatment
	moxifloxacin doses	resistance, tolerability		(high dose)
		unknown,		
Bacterial	Proportion of	Niche-forming can occur,	[61]	Moderate
infections	population uses	maintaining		(avoid AB use
	antibiotics,	polymorphism in		when
	antibiotic use	situations when it would		resistance is
	discouraged when	not be expected		high)
	resistance levels are			
	high			
HIV	Structured	Interruption strategies w	[62]	Interrupted
	treatment	short-term suppression		Treatment not
	interruptions	do not guarantee long-		beneficial
	-	term clinical benefit		
Р.	Range of dosing	Highest dose most	[63]	Aggressive
aeruginosa	regimens of	effective in reducing both		Treatment
U	fluoroquinolones	total bacterial load and		(high dose)
		resistant subpopulation		
Bacteria	Time course of	• •	[64]	Aggressive
	antibiotic	S. Emergence of		Treatment
	concentration (e.g.	resistance is		(high dose)
	patient adherence)	maximal at an		
	F	intermediate		
		rate of antibiotic-		
		mediated killing		
		II) Large, infrequent		
		doses can be		
		advantageous if the first		
		dose kills intermediately		
		resistant subpopulation.		
S.	Dose distribution of	Limiting beta-lactam use	[65]	Aggressive
pneumoniae	beta-lactams in	while increasing the doses	[05]	Treatment
pneumoniue	population of	reduces the prevalence of		(high dose)
	population of	resistance, but selects for		(ingli uose)
	patients	higher levels of resistance		
TB	Prophylavic with	Antibiotic prophylaxis	[66]	Moderate
I D	Prophylaxis with isoniazid	gives resistant strains	[66]	(prophylaxis
	1501114210	exclusive access to hosts		can be
		and therefore strongly		
		01		dangerous)
Pactoria	Varuing dagages	selects for resistance	[67]	Aggregative
Bacteria	Varying dosages	High-dose, full-term antimicrobial	[67]	Aggressive
	and durations			Treatment
		chemotherapy maximizes		(high dose,
		cure rate and minimizes		long duration)
		de novo resistance		
		acquisition		

Malaria	Varying drug	High efficacy and long	[68]	Aggressive
1 1010110	efficacy and	duration of drug	[00]	Treatment
	duration of	treatment delays the		(high dose,
	treatment (model	emergence of drug		long duration)
	based on absolute	resistance		
	fitness)			

- 1 References
- Hansen, C. R., Pressler, T., Hoiby, N. & Johansen, H. K. 2009 Long-term, lowdose azithromycin treatment reduces the incidence but increases macrolide resistance in Staphylococcus aureus in Danish CF patients. *J. Cyst. Fibros.* 8, 58–62. (doi:10.1016/j.jcf.2008.09.001)
- Guillemot, D., Carbon, C., Balkau, B., Geslin, P., Lecoeur, H., VauzelleKervroëdan, F., Bouvenot, G. & Eschwége, E. 1998 Low dosage and long
 treatment duration of beta-lactam: risk factors for carriage of penicillinresistant Streptococcus pneumoniae. *JAMA* 279, 365–70.
- Dunbar, L. & Wunderink, R. 2003 High-Dose, Short-Course Levofloxacin for
 Community-Acquired Pneumonia: A New Treatment Paradig. *Clin. Infect. Dis.*
- Chastre, J. et al. 2003 Comparison of 8 vs 15 days of antibiotic therapy for
 ventilator-associated pneumonia in adults: a randomized trial. *JAMA* 290,
 2588–98.
- Chardin, H. et al. 2009 Reduced susceptibility to amoxicillin of oral
 streptococci following amoxicillin exposure. *J. Med. Microbiol.* 58, 1092–7.
 (doi:10.1099/jmm.0.010207-0)
- 18 6. De Mitri, M. S. et al. 2000 Effect of increasing dose of interferon on the
 evolution of hepatitis C virus 1b quasispecies. *J. Med. Virol.* 60, 133–8.
- Zajdenverg, R. et al. 2010 Similar safety and efficacy of once- and twice-daily
 lopinavir/ritonavir tablets in treatment-experienced HIV-1-infected subjects
 at 48 weeks. *J. Acquir. Immune Defic. Syndr.* 54, 143–51.
- Clark, H., Brown, N. K., Wallace, J. F. & Turck, M. 1971 Emergence of resistant
 organisms as a function of dose in oxolinic acid therapy. *Am. J. Med. Sci.* 261,
 145–8.
- González-García, J., Cohen, D., Johnson, M., Sloan, L., Fredrick, L., Naylor, C., da
 Silva, B. & Bernstein, B. 2010 Short communication: Comparable safety and
 efficacy with once-daily versus twice-daily dosing of lopinavir/ritonavir
 tablets with emtricitabine + tenofovir DF in antiretroviral-naïve, HIV type 1 infected subjects: 96 week final results of the randomized t. *AIDS Res. Hum. Retroviruses* 26, 841–5.
- Lima, V., Harrigan, R., Murray, M. & Moore, D. 2008 Differential impact of
 adherence on long-term treatment response among naive HIV-infected
 individuals. *AIDS*

1 11. Harrigan, P. R. et al. 2005 Predictors of HIV drug-resistance mutations in a 2 large antiretroviral-naive cohort initiating triple antiretroviral therapy. J. 3 Infect. Dis. 191, 339–47. 4 12. Sethi, A. K., Celentano, D. D., Gange, S. J., Moore, R. D. & Gallant, J. E. 2003 5 Association between adherence to antiretroviral therapy and human immunodeficiency virus drug resistance. Clin. Infect. Dis. 37, 1112-8. 6 7 13. Menzies, D., Benedetti, A., Paydar, A., Martin, I., Royce, S., Pai, M., Vernon, A., 8 Lienhardt, C. & Burman, W. 2009 Effect of duration and intermittency of 9 rifampin on tuberculosis treatment outcomes: a systematic review and meta-10 analysis. *PLoS Med.* **6**, e1000146. Wagner, B. a, Straw, B. E., Fedorka-Cray, P. J. & Dargatz, D. a 2008 Effect of 11 14. 12 antimicrobial dosage regimen on Salmonella and Escherichia coli isolates 13 from feeder swine. Appl. Environ. Microbiol. 74, 1731–9. 14 (doi:10.1128/AEM.01132-07) 15 Huijben, S., Nelson, W. A., Wargo, A. R., Sim, D. G., Drew, D. R. & Read, A. F. 15. 16 2010 Chemotherapy, within-host ecology and the fitness of drug-resistant 17 malaria parasites. *Evolution (N.Y).* **64**, 2952–68. Wargo, A. R., Huijben, S., de Roode, J. C., Shepherd, J. & Read, A. F. 2007 18 16. 19 Competitive release and facilitation of drug-resistant parasites after 20 therapeutic chemotherapy in a rodent malaria model. Proc. Natl. Acad. Sci. U. 21 *S. A.* **104**, 19914–9. 22 17. Huijben, S., Bell, A. S., Sim, D. G., Tomasello, D., Mideo, N., Day, T. & Read, A. F. 23 2013 Aggressive chemotherapy and the selection of drug resistant pathogens. 24 *PLoS Pathog.* **9**, e1003578. (doi:10.1371/journal.ppat.1003578) 25 Knudsen, J. & Odenholt, I. 2003 Selection of resistant Streptococcus 18. 26 pneumoniae during penicillin treatment in vitro and in three animal models. 27 Antimicrob. Agents Chemother. 47, 2499–2506. (doi:10.1128/AAC.47.8.2499) 28 Fantin, B., Farinotti, R., Thabaut, A. & Carbon, C. 1994 Conditions for the 19. 29 emergence of resistance to cefpirome and ceftazidime in experimental 30 endocarditis due to Pseudomonas aeruginosa. J. Antimicrob. Chemother. 33, 31 563-569. 32 20. Daikos, G. L., Lolans, V. T. & Jackson, G. G. 1991 First-exposure adaptive 33 resistance to aminoglycoside antibiotics in vivo with meaning for optimal 34 clinical use. *Antimicrob. Agents Chemother.* **35**, 117–123. 35 21. Xiong, Y., Caillon, J., Kergueris, M., Drugeon, H., Baron, D., Potel, G. & Bayer, A. 1997 Adaptive resistance of Pseudomonas aeruginosa induced by 36

1 aminoglycosides and killing kinetics in a rabbit endocarditis model. 2 Antimicrob. Agents Chemother. 41, 823–826. 3 22. Stearne, L. E. T., Goessens, W. H. F., Mouton, J. W. & Gyssens, I. C. 2007 Effect of 4 dosing and dosing frequency on the efficacy of ceftizoxime and the emergence 5 of ceftizoxime resistance during the early development of murine abscesses caused by Bacteroides fragilis and Enterobacter cloacae mixed infection. 6 7 Antimicrob. Agents Chemother. 51, 3605–11. (doi:10.1128/AAC.01486-06) 8 Cui, J., Liu, Y., Wang, R., Tong, W., Drlica, K. & Zhao, X. 2006 The mutant 23. 9 selection window in rabbits infected with Staphylococcus aureus. J. Infect. Dis. 10 **194**, 1601–8. Schneider, P., Chan, B. H., Reece, S. E. & Read, A. F. 2008 Does the drug 11 24. sensitivity of malaria parasites depend on their virulence? *Malar. J.* **7**, 257. 12 13 25. De Roode, J. C., Culleton, R., Bell, A. S. & Read, A. F. 2004 Competitive release of 14 drug resistance following drug treatment of mixed Plasmodium chabaudi 15 infections. *Malar. J.* **3**, 33. 16 26. Nguyen, T. T., Chachaty, E., Huy, C., Cambier, C., de Gunzburg, J., Mentré, F. & 17 Andremont, A. 2012 Correlation between fecal concentrations of ciprofloxacin 18 and fecal counts of resistant Enterobacteriaceae in piglets treated with 19 ciprofloxacin: toward new means to control the spread of resistance? 20 Antimicrob. Agents Chemother. 56, 4973–5. 21 27. Bourgeois-Nicolaos, N., Massias, L., Couson, B., Butel, M.-J., Andremont, A. & 22 Doucet-Populaire, F. 2007 Dose dependence of emergence of resistance to 23 linezolid in Enterococcus faecalis in vivo. J. Infect. Dis. 195, 1480-8. 24 28. Goessens, W. H. F., Mouton, J. W., ten Kate, M. T., Bijl, A. J., Ott, A. & Bakker-25 Woudenberg, I. A. J. M. 2007 Role of ceftazidime dose regimen on the selection 26 of resistant Enterobacter cloacae in the intestinal flora of rats treated for an 27 experimental pulmonary infection. J. Antimicrob. Chemother. 59, 507–516. 28 29. Boak, L. M., Li, J., Rayner, C. R. & Nation, R. L. 2007 29 Pharmacokinetic/pharmacodynamic factors influencing emergence of 30 resistance to linezolid in an in vitro model. Antimicrob. Agents Chemother. 51, 31 1287-92. Zhu, Y., Hu, L., Mei, Q., Cheng, J., Liu, Y., Ye, Y. & Li, J. 2012 Testing the mutant 32 30. 33 selection window in rabbits infected with methicillin-resistant 34 Staphylococcus aureus exposed to vancomycin. J. Antimicrob. Chemother. 67, 35 2700-6. (doi:10.1093/jac/dks280)

1 2 3 4	31.	Negri, MC., Lipsitch, M., Blazquez, J., Levin, B. R. & Baquero, F. 2000 Concentration-Dependent Selection of Small Phenotypic Differences in TEM beta -Lactamase-Mediated Antibiotic Resistance. <i>Antimicrob. Agents</i> <i>Chemother.</i> 44 , 2485–2491.
5 6 7 8 9	32.	Vasseur, M. V, Laurentie, M., Rolland, JG., Perrin-Guyomard, A., Henri, J., Ferran, A. A., Toutain, PL. & Bousquet-Mélou, A. 2014 Low or high doses of cefquinome targeting low or high bacterial inocula cure Klebsiella pneumoniae lung infections but differentially impact the levels of antibiotic resistance in fecal flora. <i>Antimicrob. Agents Chemother.</i> 58 , 1744–8.
10 11 12 13	33.	Pollitt, L. C., Huijben, S., Sim, D. G., Salathé, R. M., Jones, M. J. & Read, A. F. 2014 Rapid response to selection, competitive release and increased transmission potential of artesunate-selected Plasmodium chabaudi malaria parasites. <i>PLoS</i> <i>Pathog.</i> 10 , e1004019.
14 15 16 17 18	34.	Blaser, J., Stone, B. B., Groner, M. C. & Zinner, S. H. 1987 Comparative study with enoxacin and netilmicin in a pharmacodynamic model to determine importance of ratio of antibiotic peak concentration to MIC for bactericidal activity and emergence of resistance. <i>Antimicrob. Agents Chemother.</i> 31 , 1054–1060. (doi:10.1128/AAC.31.7.1054)
19 20 21 22	35.	Marchbanks, C. R., McKiel, J. R., Gilbert, D. H., Robillard, N. J., Painter, B., Zinner, S. H. & Dudley, M. N. 1993 Dose ranging and fractionation of intravenous ciprofloxacin against Pseudomonas aeruginosa and Staphylococcus aureus in an in vitro model of infection. <i>Antimicrob. Agents Chemother.</i> 37 , 1756–1763.
23 24 25	36.	Thorburn, C. E. 2001 The effect of pharmacokinetics on the bactericidal activity of ciprofloxacin and sparfloxacin against Streptococcus pneumoniae and the emergence of resistance. <i>J. Antimicrob. Chemother.</i> 48 , 15–22.
26 27 28 29	37.	Olofsson, S. K., Marcusson, L. L., Komp Lindgren, P., Hughes, D. & Cars, O. 2006 Selection of ciprofloxacin resistance in Escherichia coli in an in vitro kinetic model: relation between drug exposure and mutant prevention concentration. <i>J. Antimicrob. Chemother.</i> 57 , 1116–21.
30 31 32 33 34	38.	Tam, V. H., Louie, A., Deziel, M. R., Liu, W. & Drusano, G. L. 2007 The relationship between quinolone exposures and resistance amplification is characterized by an inverted U: a new paradigm for optimizing pharmacodynamics to counterselect resistance. <i>Antimicrob. Agents</i> <i>Chemother.</i> 51 , 744–7. (doi:10.1128/AAC.00334-06)
35 36 37 38	39.	Andes, D., Forrest, A., Lepak, A., Nett, J., Marchillo, K. & Lincoln, L. 2006 Impact of antimicrobial dosing regimen on evolution of drug resistance in vivo: fluconazole and Candida albicans. <i>Antimicrob. Agents Chemother.</i> 50 , 2374– 83. (doi:10.1128/AAC.01053-05)

1 40. Schmalstieg, A. M., Srivastava, S., Belkava, S., Deshpande, D., Meek, C., Leff, R., 2 van Oers, N. S. C. & Gumbo, T. 2012 The antibiotic resistance arrow of time: 3 efflux pump induction is a general first step in the evolution of mycobacterial drug resistance. *Antimicrob. Agents Chemother.* **56**, 4806–15. 4 5 Gullberg, E., Cao, S., Berg, O. G., Ilbäck, C., Sandegren, L., Hughes, D. & 41. 6 Andersson, D. I. 2011 Selection of resistant bacteria at very low antibiotic 7 concentrations. PLoS Pathog. 7, e1002158. 8 (doi:10.1371/journal.ppat.1002158) 9 42. Olofsson, S. K., Geli, P., Andersson, D. I. & Cars, O. 2005 Pharmacodynamic 10 model to describe the concentration-dependent selection of cefotaximeresistant Escherichia coli. Antimicrob. Agents Chemother. 49, 5081–91. 11 12 Gumbo, T., Louie, A., Deziel, M. R., Liu, W., Parsons, L. M., Salfinger, M. & 43. 13 Drusano, G. L. 2007 Concentration-dependent Mycobacterium tuberculosis 14 killing and prevention of resistance by rifampin. Antimicrob. Agents *Chemother.* **51**, 3781–8. (doi:10.1128/AAC.01533-06) 15 16 44. Bowker, K. E., Noel, A. R., Tomaselli, S. G., Elliott, H. & Macgowan, A. P. 2012 17 Pharmacodynamics of the antibacterial effect of and emergence of resistance to doripenem in Pseudomonas aeruginosa and Acinetobacter baumannii in an 18 19 in vitro pharmacokinetic model. Antimicrob. Agents Chemother. 56, 5009–15. 20 45. Bergen, P. J., Li, J., Nation, R. L., Turnidge, J. D., Coulthard, K. & Milne, R. W. 21 2008 Comparison of once-, twice- and thrice-daily dosing of colistin on 22 antibacterial effect and emergence of resistance: studies with Pseudomonas 23 aeruginosa in an in vitro pharmacodynamic model. J. Antimicrob. Chemother. 24 **61**, 636–42. 25 Tam, V. H., Schilling, A. N., Neshat, S., Poole, K., Melnick, D. A. & Coyle, E. A. 46. 26 2005 Optimization of meropenem minimum concentration/MIC ratio to 27 suppress in vitro resistance of Pseudomonas aeruginosa. Antimicrob. Agents 28 *Chemother.* **49**, 4920–7. 29 47. Zinner, S. H., Lubenko, I. Y., Gilbert, D., Simmons, K., Zhao, X., Drlica, K. & 30 Firsov, A. A. 2003 Emergence of resistant Streptococcus pneumoniae in an in 31 vitro dynamic model that simulates moxifloxacin concentrations inside and 32 outside the mutant selection window: related changes in susceptibility. 33 resistance frequency and bacterial killing. J. Antimicrob. Chemother. 52, 616-34 22. Odenholt, I., Gustafsson, I., Löwdin, E. & Cars, O. 2003 Suboptimal antibiotic 35 48. 36 dosage as a risk factor for selection of penicillin-resistant Streptococcus 37 pneumoniae: in vitro kinetic model. Antimicrob. Agents Chemother. 47, 518-38 23.

1 2 3	49.	Srivastava, S., Pasipanodya, J. G., Meek, C., Leff, R. & Gumbo, T. 2011 Multidrug- resistant tuberculosis not due to noncompliance but to between-patient pharmacokinetic variability. <i>J. Infect. Dis.</i> 204 , 1951–9.
4 5 6 7	50.	Martinez, M. N., Papich, M. G. & Drusano, G. L. 2012 Dosing regimen matters: the importance of early intervention and rapid attainment of the pharmacokinetic/pharmacodynamic target. <i>Antimicrob. Agents Chemother.</i> 56 , 2795–805. (doi:10.1128/AAC.05360-11)
8 9 10 11	51.	Negri, M. C., Morosini, M. I., Loza, E. & Baquero, F. 1994 In vitro selective antibiotic concentrations of beta-lactams for penicillin-resistant Streptococcus pneumoniae populations. <i>Antimicrob. Agents Chemother.</i> 38 , 122–125.
12 13 14	52.	Roberts, J. a, Kruger, P., Paterson, D. L. & Lipman, J. 2008 Antibiotic resistancewhat's dosing got to do with it? <i>Crit. Care Med.</i> 36 , 2433–40. (doi:10.1097/CCM.0b013e318180fe62)
15 16 17	53.	Geli, P., Laxminarayan, R., Dunne, M. & Smith, D. L. 2012 "One-size-fits-all"? Optimizing treatment duration for bacterial infections. <i>PLoS One</i> 7 , e29838. (doi:10.1371/journal.pone.0029838)
18 19 20	54.	Moghadas, S. M., Bowman, C. S., Röst, G. & Wu, J. 2008 Population-wide emergence of antiviral resistance during pandemic influenza. <i>PLoS One</i> 3 , e1839. (doi:10.1371/journal.pone.0001839)
21 22 23	55.	Carvajal-Rodríguez, A., Crandall, K. a & Posada, D. 2007 Recombination favors the evolution of drug resistance in HIV-1 during antiretroviral therapy. <i>Infect. Genet. Evol.</i> 7 , 476–83. (doi:10.1016/j.meegid.2007.02.001)
24 25	56.	Débarre, F., Lenormand, T. & Gandon, S. 2009 Evolutionary epidemiology of drug-resistance in space. <i>PLoS Comput. Biol.</i> 5 . (doi:10.1371/Citation)
26 27 28	57.	Shiri, T. & Welte, A. 2008 Transient antiretroviral therapy selecting for common HIV-1 mutations substantially accelerates the appearance of rare mutations. <i>Theor. Biol. Med. Model.</i> 5 , 25. (doi:10.1186/1742-4682-5-25)
29 30 31	58.	Simpson, J. a, Watkins, E. R., Price, R. N., Aarons, L., Kyle, D. E. & White, N. J. 2000 Mefloquine pharmacokinetic-pharmacodynamic models: implications for dosing and resistance. <i>Antimicrob. Agents Chemother.</i> 44 , 3414–24.
32 33 34	59.	Smith, G., Grenfell, B. T., Isham, V. & Cornell, S. 1999 Anthelmintic resistance revisited: under-dosing, chemoprophylactic strategies, and mating probabilities. <i>Int. J. Parasitol.</i> 29 , 77–91; discussion 93–4.

1 2 3 4	60.	Gumbo, T., Louie, A., Deziel, M. R., Parsons, L. M., Salfinger, M. & Drusano, G. L. 2004 Selection of a moxifloxacin dose that suppresses drug resistance in mycobacterium tuberculosis, by use of an in vitro pharmacodynamic infection model and mathematical modeling. <i>J. Infect. Dis.</i> 190 , 1642–51.
5 6	61.	Boni, M. F. & Feldman, M. W. 2005 Evolution of antibiotic resistance by human and bacterial niche construction. <i>Evolution</i> 59 , 477–91.
7 8 9	62.	Bajaria, S. H., Webb, G. & Kirschner, D. E. 2004 Predicting differential responses to structured treatment interruptions during HAART. <i>Bull. Math. Biol.</i> 66 , 1093–118.
10 11 12	63.	Jumbe, N. et al. 2003 Application of a mathematical model to prevent in vivo amplification of antibiotic-resistant bacterial populations during therapy. <i>J. Clin. Invest.</i> 112 , 275–85.
13 14	64.	Lipsitch, M. & Levin, B. 1997 The population dynamics of antimicrobial chemotherapy. <i>Antimicrob. Agents Chemother.</i> 41 , 363–373.
15 16 17 18	65.	Opatowski, L., Mandel, J., Varon, E., Boëlle, PY., Temime, L. & Guillemot, D. 2010 Antibiotic dose impact on resistance selection in the community: a mathematical model of beta-lactams and Streptococcus pneumoniae dynamics. <i>Antimicrob. Agents Chemother.</i> 54 , 2330–7.
19 20 21 22	66.	Cohen, T., Lipsitch, M., Walensky, R. P. & Murray, M. 2006 Beneficial and perverse effects of isoniazid preventive therapy for latent tuberculosis infection in HIV-tuberculosis coinfected populations. <i>Proc. Natl. Acad. Sci. U. S. A.</i> 103 , 7042–7. (doi:10.1073/pnas.0600349103)
23 24 25	67.	Ankomah, P. & Levin, B. R. 2014 Exploring the collaboration between antibiotics and the immune response in the treatment of acute, self-limiting infections. <i>Proc. Natl. Acad. Sci. U. S. A.</i> 111 , 8331–8.
26 27 28 29	68.	Kim, Y., Escalante, A. A. & Schneider, K. A. 2014 A Population Genetic Model for the Initial Spread of Partially Resistant Malaria Parasites under Anti- Malarial Combination Therapy and Weak Intrahost Competition. <i>PLoS One</i> 9 , e101601.
30		