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Abstract

The co-evolution of myxoma virus (MYXV) and the European rabbit occurred independently

in Australia and Europe from different progenitor viruses. Although this is the canonical

study of the evolution of virulence, whether the genomic and phenotypic outcomes of MYXV

evolution in Europe mirror those observed in Australia is unknown. We addressed this ques-

tion using viruses isolated in the United Kingdom early in the MYXV epizootic (1954–1955)

and between 2008–2013. The later UK viruses fell into three distinct lineages indicative of a

long period of separation and independent evolution. Although rates of evolutionary change

were almost identical to those previously described for MYXV in Australia and strongly

clock-like, genome evolution in the UK and Australia showed little convergence. The pheno-

types of eight UK viruses from three lineages were characterized in laboratory rabbits and

compared to the progenitor (release) Lausanne strain. Inferred virulence ranged from highly

virulent (grade 1) to highly attenuated (grade 5). Two broad disease types were seen: cuta-

neous nodular myxomatosis characterized by multiple raised secondary cutaneous lesions,

or an amyxomatous phenotype with few or no secondary lesions. A novel clinical outcome

was acute death with pulmonary oedema and haemorrhage, often associated with bacteria

in many tissues but an absence of inflammatory cells. Notably, reading frame disruptions in

genes defined as essential for virulence in the progenitor Lausanne strain were compatible

with the acquisition of high virulence. Combined, these data support a model of ongoing

host-pathogen co-evolution in which multiple genetic pathways can produce successful out-

comes in the field that involve both different virulence grades and disease phenotypes, with

alterations in tissue tropism and disease mechanisms.
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Author summary

Species jumps and subsequent pathogen evolution are of increasing importance in a glob-

ally connected world. The co-evolution of myxoma virus and the European rabbit follow-

ing the introduction of the virus into Australia in 1950 is the canonical case of host

jumping and host-pathogen co-evolution on a continental scale. This natural experiment

was repeated with the release of a separate strain of myxoma virus in Europe. On both

continents moderately attenuated strains of virus became dominant while rabbits were

selected for resistance to myxomatosis. Here we examine the genotypic and phenotypic

evolution of myxoma virus in Great Britain compared to Australia and show that despite

ecological convergence and equivalent evolutionary rates, the virus has followed distinct

evolutionary pathways on both continents with few shared mutations. Furthermore, we

reveal novel mechanisms of pathogenesis and tissue tropism compared to the progenitor

virus, and that the disruption of virulence genes is compatible with high virulence. This

suggests that mutations have occurred that can compensate for the loss of virulence genes

driven by the nexus between virulence and transmission in an ongoing host-pathogen

arms race.

Introduction

The establishment and spread of Myxoma virus (MYXV; genus Leporipoxvirus; family Poxviri-
dae) in the wild European rabbit (Oryctolagus cuniculus) population of Australia in 1950 initi-

ated the textbook case study of host-pathogen co-evolution on a continental scale [1, 2]. The

virus was novel to the European rabbit having evolved in the Brazilian tapeti (Sylvilagus brasi-
liensis). In the tapeti MYXV induces an innocuous, localized cutaneous fibroma from which

the virus is mechanically transmitted by mosquitoes or fleas. However, MYXV proteins that

had evolved to suppress immune clearance and facilitate virus persistence in the natural host

overwhelmed the immune system of the European rabbit causing the disseminated, lethal dis-

ease myxomatosis [2, 3].

In Australia MYXV was released into naïve rabbit populations as a biocontrol agent. The

initial virus, a strain known as SLS with a case fatality rate (CFR) estimated at 99.8% [4], was

rapidly replaced by moderately attenuated viruses, which by permitting longer survival of the

infected rabbit were more likely to be transmitted by mosquitoes. The majority of these attenu-

ated viruses still maintained relatively high CFRs of 70–95% [5, 6]. Simultaneously, there was

very strong selection pressure for the evolution of genetically resistant rabbits [7, 8]. It is likely

that the increased resistance in the rabbit population also drove selection for increased viru-

lence in the virus to maintain transmissibility, as highly attenuated viruses transmitted poorly

[9, 10, 11].

This large-scale evolutionary “experiment” is especially informative because it was repeated

on a continental scale as MYXV was subsequently released in Europe. In June 1952, a land-

holder in France inoculated two wild rabbits with a strain of MYXV (Brazil Campinas/1949),

now termed the Lausanne (Lu) strain. From this starting point, MYXV spread through the

wild and domestic rabbit populations of Europe [12]. Myxomatosis was detected in wild rab-

bits in Britain in October 1953, probably due to the illegal release of an infected rabbit from

France [13]. Despite attempts at control, the virus became established and spread throughout

the wild rabbit population [14], which was eventually reduced to perhaps 1% of the pre-myxo-

matosis level. Strikingly, although the European release involved a different starting strain,
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with different insect vectors and ecological conditions, it resulted in essentially the same out-

come in terms of virulence evolution [1, 12].

To facilitate evolutionary studies, field isolates of MYXV were classified into virulence

grades from 1 to 5 based on average survival times (AST) in small groups of laboratory rabbits.

The progenitor type viruses, killing 100% of infected rabbits, were of grade 1 virulence, while

grade 5 viruses were highly attenuated with CFRs<50%. Most field isolates collected following

the initial radiation in Australia were of grade 3 virulence with CFRs of 70–95% [5, 6]. The

grade 3 classification was later split into grade 3A and 3B to provide greater resolution [15].

Although the initial virus isolates in Britain were of grade 1 virulence [5], attenuated viruses

were detected within 12 months [16, 5].

A large scale study of the virulence of UK MYXV isolates from 1962 revealed a similar evo-

lutionary pattern to Australia, with the majority of isolates being of grade 3 virulence [15].

Studies of UK MYXV isolates from 1975 and 1981 confirmed the predominance of grade 3

viruses, but also showed that grade 2 viruses (with CFRs of>95%) had become much more

common than in Australia; over 90% of viruses tested in 1981 were grade 3A or grade 2, imply-

ing CFRs of>90% [17]. Genetic resistance to MYXV was documented much later in Britain

than in Australia, but then rapidly increased in the wild rabbit population [18, 19] and may

again have driven selection for higher virulence.

Although there have been detailed studies of the ecology, transmission, virulence and resis-

tance of MYXV in Britain, little is known about the genetic and phenotypic basis of MYXV

evolution and whether and how it parallels the evolutionary process seen in Australia. Indeed,

previous studies have largely focused on early virus isolates sampled between 1954 and 1955

[20, 21]. To address this central question in viral evolution we determined the genome

sequences of 21 MYXV isolates sampled between 2008 and 2014 in Scotland and England.

Importantly, we characterise the phenotype of a number of these viruses in laboratory rabbits

compared to the progenitor Lu strain and reveal major changes in disease pathogenesis.

Results

Diversity and evolution of MYXV in Europe

The prototype Lu sequence [22, 23] consists of 161,777 nucleotides of double-stranded DNA

with closed single stranded hairpin loops at the termini and duplicated terminal inverted

repeats (TIRs) of 11,577 bp. The virus encodes 158 unique open reading frames (ORFs), 12 of

which are duplicated in the TIRs.

The UK viruses descend from the Lu strain that was released into Europe as a biological

control (Fig 1). The earliest sequences are from the grade 1 virulence Cornwall strain

(England/Cornwall/4-54/1) isolated in April 1954 and the grade 3 Sussex strain (England/Sus-

sex/9-54/1) from September 1954 and which quickly diverged from the introduced virus [20,

21]. This divergence is captured in a phylogenetic analysis of these viruses along with an addi-

tional early isolate (Belfast/1955) sequenced here, 21 viruses from 2008–2013 (Table 1), and a

number of other European viruses (Fig 1). Notably, the viruses from Perthshire, Scotland can

be divided into two lineages, with those sampled in 2008 (lineage 1) phylogenetically distinct

from those present in 2010–2013 (lineage 2). In 2009, both lineages were present in the Perth-

shire population and it is possible that our limited sampling has not detected other examples

of co-circulation. Within lineage 1, the viruses sampled in 2008 are also distinct from those

sampled in 2009, while there is no obvious distinction within the sequences of lineage 2 from

2009–2013. The three viruses sequenced from Yorkshire, sampled between 31/12/2008 and 8/

3/2011, represent a third distinct UK lineage.

Multiple evolutionary pathways of myxoma virus
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Despite the difference in progenitor viruses in Australia and Europe the subsequent evolu-

tion of these viruses is strongly clock-like. Using a Bayesian approach and a strict molecular

Fig 1. Evolutionary history of MXYV. (A) Maximum clade credibility (MCC) tree of 57 isolates of MYXV from the Australian and European

epizootics including a sequence from Spain [23], four from Germany and one from Poland [24]. Sequence labels are color-coded to reflect virulence

grade: grade 1, 2 = red, grade 3 = green, grade 4–5 = blue, non-quantified grade = black. The Lausanne and SLS progenitor strains are shown in bold

italic. Tip times reflect the year of sampling. Estimated times to common ancestry are shown for key nodes and posterior probability values greater

than 0.95 are marked by the * symbol. The different lineages of UK lineages are marked. (B) Regression of root-to-tip MYXV genetic distances

against the year of sampling. Australian viruses are shaded blue and those from Europe in yellow. (C) Bayesian estimates of substitution rate utilizing

different evolutionary models: A = Australian viruses, HKY+Γ nucleotide substitution model, relaxed clock, constant population size; B = Australian

viruses, HKY+Γ, strict clock, constant population size; C = European viruses, HKY+Γ, relaxed clock, constant population size; D = European viruses,

HKY+Γ, strict clock, constant population size; E = All viruses, GTR+Γ, relaxed clock, Bayesian skyride; F = All viruses, HKY+Γ, relaxed clock,

constant population size; G = All viruses, HKY+Γ, relaxed clock, Bayesian skyride; H = All viruses, HKY+Γ, strict clock, constant population size

(shown in red as this was used to infer the MCC tree); I = All viruses, HKY+Γ, strict clock, Bayesian skyride.

doi:10.1371/journal.ppat.1006252.g001
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clock the mean evolutionary rate for the 32 European viruses was estimated to be 0.99 x 10−5

nucleotide substitutions per site, per year (subs/site/year) (95% HPD values of 0.90–1.09 x 10−5

subs/site/year), while the equivalent value for the 25 Australian viruses was 1.03 x 10−5 subs/

site/year (95% HPD values = 0.86–1.21 x 10−5 subs/site/year). Very similar rates were obtained

using a variety of data sets and nucleotide substitution, molecular clock and demographic

models (Fig 1). In addition, a regression of root-to-tip genetic distance against year of sam-

pling for the combined Australian and European data set revealed strong temporal structure

(R2 = 0.93), with a mean evolutionary rate of 1.04 x 10−5 subs/site/year that was very close to

that estimated using the Bayesian approach for the entire data set at 1.02 x 10−5 subs/site/year

(95% HPD values = 0.94–1.10 x 10−5 subs/site/year) (Fig 1). The similarly of rates among

viruses sampled on different continents suggests that their high evolutionary rate is largely a

reflection of rapid background mutation as suggested for other pox viruses [25]. Under these

evolutionary rates it is estimated that the two MYXV lineages from Perthshire shared a com-

mon ancestor between 1956 and 1963, while the lineage leading to the Yorkshire viruses origi-

nated between 1953 and 1955 (Fig 1).

Across all the UK viruses there were 162 non-synonymous mutations, 137 synonymous

mutations and 26 insertion/deletion events within ORFs compared to Lu; 51 genes had no

mutations and a further 23 only possessed synonymous changes (Fig 2A). A comparison with

the mutations observed in the Australian isolates (Fig 2B) revealed that different genes tended

to show the highest numbers of mutation in each case. Indeed, only the M017L gene exhibited

frequent mutation in both data sets (Fig 2C). Overall, 23 genes contained no mutations among

both the UK and Australian sequences and a further 23 had only synonymous changes (S1

Table).

Table 1. Viruses sequenced in this study.

Virus designation Sampling date

Belfast/1955 1955

Perthshire 1526 17/09/2008

Perthshire 1527 17/09/2008

Perthshire 1529 17/09/2008

Perthshire 1537 17/09/2008

Perthshire 1754 14/07/2009

Perthshire 1756 14/07/2009

Perthshire 1792 02/08/2009

Perthshire 1812 10/08/2009

Perthshire 1818 10/08/2009

Perthshire 2080 15/10/2010

Perthshire 2082 15/10/2010

Perthshire 2256 20/09/2011

Perthshire 2272 26/09/2011

Perthshire 2282 15/10/2011

Perthshire 2409 30/8/2012

Perthshire 2427 19/9/2012

Perthshire 2428 19/9/2012

Perthshire 2524 29/9/2013

Yorkshire 127 31/12/2008

Yorkshire Col 08/03/2011

Yorkshire 135 02/11/2009

doi:10.1371/journal.ppat.1006252.t001
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Fig 2. Mutation analysis in MYXV. (A) The number of mutations per gene (y-axis) in all viruses from the UK. (B)

The number of mutations per gene (y-axis) in all viruses from Australia [21]. In each graph, blue lines represent the

number of non-synonymous mutations, red lines represent synonymous mutations, and green lines represent indels

(any insertion/deletion event was counted as a single event). (C) The total number of synonymous, non-synonymous

and indel mutations per gene was standardised by dividing by the gene length. The resulting mutational frequency

for each gene was plotted for UK and Australia. The red lines indicate the median mutation frequencies for the UK

Multiple evolutionary pathways of myxoma virus
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As previously reported for MYXV in Australia [20, 21], single or multiple nucleotide inser-

tions/deletions (indels) leading to the predicted disruption of ORFs were relatively common

(Table 2). Disruptions of genes previously identified as having major virulence functions and

leading to likely loss of function of the encoded protein occurred in M002L/R [26]; M004L/R
[27, 28]; M005L/R [29, 30]; M148R [31] and M153R [32, 33]. In addition, there was loss of the

M009LORF in Perthshire lineage 1 and by two independent mutations in the Yorkshire line-

age, and of the M036LORF in Perthshire lineages 1 and 2. There was also an adjacent mutation

in M036L in the early Sussex and Nottingham strains, with a possible reversal of this disruptive

mutation in the Yorkshire lineage (S1 Fig). Single viruses with gene disruptions were found in

all three lineages: M135R (Perthshire 1527) and M008.1L/R (Perthshire 2409) have been shown

to have virulence functions [34, 35]. M009L has also been lost in most modern Australian

viruses, as well as in some European isolates and in the Californian MSW strain of MYXV [20,

21, 36, 37, 24], suggesting that this gene is not essential.

In addition to indels that disrupted ORFs, there were a number of large and small indels

within genes that were not disruptive (S2 Table). Moreover, there were single nucleotide indels

in multiple intergenic homopolymer regions and larger deletions in some blocks of intergenic

repeat sequence elements. These will not be considered further.

and Australia (which were not significantly different). The blue diagonal line indicates equal mutation frequencies for

the UK and Australia. Selected individual genes are indicated.

doi:10.1371/journal.ppat.1006252.g002

Table 2. Gene disruptions in the UK isolates of MYXV.

Gene Protein function Mutation virus

M002L/R 1Antiapoptosis/TNF inhibition Premature stop amino acid 174; retains antiapoptosis; loses secreted

TNF binding

Perthshire 1526; 1527; 1529;

1537

M003.2L/

R

unknown Premature stop amino acid 66 Perthshire 2272

M004L/R Antiapoptosis Premature stop amino acid 141; loss of C-terminal RDEL motif Perthshire lineage 1

M005L/R Antiapoptosis/E3 Ub ligase complex Altered amino acid sequence >401 & premature stop at 471; loss of

functional C-terminal F-box motif

Yorkshire lineage

M008L/R E3 Ub ligase complex Altered amino acid sequence >361 and premature stop at 421 Perthshire 2082

M008.1L/

R

Secreted serine proteinase inhibitor

(SERPIN)

Premature stop amino acid 268 deletes active site Perthshire 2409

M009L E3 Ub ligase complex Premature stop amino acid 192 and amino acid 508 Perthshire lineage 1

M009L E3 Ub ligase complex Premature stop amino acid 288 Yorkshire Col; Yorkshire 135

M009L E3 Ub ligase complex Premature stop amino acid 348 Yorkshire 127

M018L VACV F8L (cytoplasmic protein) Premature stop amino acid 46 (normal 66) Yorkshire 127

M036L VACV O1L orthologue Premature stop aa 442 Sussex (1954); Nottingham

(1955)

M036L VACV O1L orthologue Premature stop amino acid 441 Perthshire lineage 1 & 2

M036L VACV O1L orthologue Premature stop amino acid 338 Perthshire lineage 2

M134R Structural? Premature stop amino acid 1953 Nottingham (1955)

M135R Immunomodulatory Premature stop amino acid 69 Perthshire 1527

M148R E3 Ub ligase complex Premature stop amino acid 170 Perthshire lineage 2

M150R NF-κB inhibition; E3 Ub ligase

complex

Premature stop amino acid 196 Nottingham (1955)

M153R E3 Ub ligase complex/MHC-1

downregulation

Premature stop amino acid 118; loss of conserved domain Perthshire lineage 1;

Yorkshire lineage

1Shaded cells represent genes implicated in MYXV virulence.

doi:10.1371/journal.ppat.1006252.t002
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Mutations in promoter regions

Temporal regulation of most MYXV genes has been predicted on the basis of conserved early,

late or intermediate promoter motifs [22, 38]. However, the transcription start sites of most

MYXV mRNAs have not been mapped and hence actual expression may differ from that

assigned [39, 31, 40]. In the UK sequences, mutations upstream of the M000.5L/R,M001L/R,

M008.1L/R,M019L,M033L, and M153R genes were located close to potential promoter

sequences and could conceivably alter transcription [41, 42]. However, any effect was likely to

be limited, with the possible exception of a mutation in the M153R putative promoter sequence

in the Perthshire lineage 2 viruses which could conceivably decrease promoter activity. This

mutation was also present in the Australian WS6 1071 virus.

Phenotypes of virus isolates

To evaluate how the genetic divergence from the Lu progenitor has affected disease pheno-

types in the UK viruses, groups of six laboratory rabbits were infected with representative

viruses from Perthshire lineages 1 and 2, and all three Yorkshire lineage viruses, and their viru-

lence and disease phenotypes compared to rabbits infected with the Lu progenitor virus.

The virulence grade of each isolate was estimated using the method of Fenner and Marshall

(1957) [5]. These virulence assignments were necessarily inferred since rabbits were eutha-

nized and survival times (ST) estimated rather than using death as an endpoint (Table 3).

Kaplan-Meier plots show the actual ST estimates rather than the normalized values (Fig 3).

The Lu strain was tested as a control and had a similar AST to previous reports [5]. Notably,

the grade 1 Yorkshire 135 isolate had a significantly lower ST than all other viruses tested

including Lu.

In our animal experiments the disease caused by Lu was indistinguishable from previous

descriptions of Lu as the prototype European virus [5], with the exception that we did not see

the copious nasal discharge, likely because of the absence of Pasteurella multocida in the upper

Table 3. Clinical phenotypes of UK MYXV isolates.

Virus Normalized average survival time (AST) days;

(case fatality rate; CFR)

Unnormalized survival time

estimates (range) days

Inferred virulence

grade1
Disease phenotype

Lausanne 12.5 (6/6) 12.1–13.2 1 nodular

Perthshire

1792

15.9 (6/6) 12.6–22 2 amyxomatous

Yorkshire Col 15.7 (6/6) 12.7–20 2 amyxomatous

Perthshire

2082

17.9 (6/6) 14.6–22 days 3A amyxomatous

Perthshire

2282

20.7 (5/6) 13–>26 (S?)2 3A amyxomatous

Yorkshire 127 15.3s (5/6) 11.6 –S3 2/3A4 nodular

Yorkshire 135 9.1 (6/6) 7.6–12.6 1 amyxomatous

Perthshire

1537

17.1 (4/6) 11–>26 (S? S?) 3A/44 amyxomatous or

nodular

Perthshire

1527

n/a (1/6) n/a 5 nodular

1 [43].
2 possible survivor.
3 recovered.
4 based on AST/CFR.

doi:10.1371/journal.ppat.1006252.t003
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respiratory tract of the specific-pathogen-free rabbits. Notable features of Lu compared to the

infections with the recent virus isolates were extreme swelling of the eyelids and lips, large size

of the primary lesion, large numbers of secondary cutaneous lesions and a precipitous clinical

decline between days 10 and 12 (S3 Table; S4 Table).

Fig 3. Kaplan-Meier survival plots. (A) Perthshire lineage 1. There is a statistically significant difference between Perthshire 1792 and

Perthshire 1527 (p = 0.0035; log rank test), but not between Perthshire 1527 and Perthshire 1537 (p = 0.11) nor between Perthshire 1792 and

Perthshire 1537 (p = 0.79). (B) Perthshire lineage 2. There is no significant difference between the two viruses studied (p = 0.25). (C) Yorkshire

lineage. There is a significant difference between Yorkshire 135 and Yorkshire Col (p = 0.0015) and Yorkshire 135 and Yorkshire 127 (p = 0.019),

but not between Yorkshire col and Yorkshire 127 (p = 0.53). (D) Lausanne. There is a significant difference in survival time between Yorkshire 135

and Lu (p = 0.013).

doi:10.1371/journal.ppat.1006252.g003
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A striking feature of infection with some viruses from all three recent UK lineages was

acute collapse resembling septic shock with relatively mild signs of myxomatosis. This was dis-

tinct from the disease caused by Lu. Hemorrhages in multiple tissues, massive pulmonary

oedema and swollen, pale or granular livers were also frequently but not universally present,

although the degree of pathology may have depended on timing of euthanasia or death. Aggre-

gates of coccoid bacteria were often present in multiple tissues but with no apparent cellular

inflammatory response (Fig 4; S5 Table). These rabbits often had higher virus titres in liver

and lung compared to rabbits infected with Lu (S6 Table).

Overall, disease phenotypes could be divided into: (i) a nodular cutaneous or “myxoma-

tous” disease with prominent primary lesions at the inoculation site and secondary cutaneous

lesions on ears, head, body and legs as seen with Lu, Perthshire 1527 and Yorkshire 127

viruses, or (ii) a disease that resembled the “amyxomatous” phenotype described in Europe

[44, 45, 46] and characterized by a poorly defined primary lesion and no or very few secondary

cutaneous lesions. This second phenotype was seen with Perthshire 1792, 2082, 2282, York-

shire col and Yorkshire 135, while Perthshire 1537 had an intermediate phenotype (Fig 5; S4

Table; S5 Table). Acute collapse was only seen with the amyxomatous infections. Other fea-

tures of myxomatosis such as swollen heads, ears, eyelids and perineum were, to some degree,

common to all infections. Prolonged incubation periods described for some amyxomatous

viruses [44] were not seen.

Distinctive differences were also present in the pathology of the acute collapse amyxo-

matous infections compared with Lu and the myxomatous phenotype (S5 Table). Bacterae-

mia was not a feature of the Lu infections. Although bacteria were observed in a necrotic

focus in the liver of one rabbit infected with Lu, these were associated with an acute inflam-

matory response. The large numbers of neutrophils seen deep in cutaneous tissues and

within lymph nodes in the Lu infections (Fig 5H) were absent in rabbits with the acute col-

lapse syndrome and lymph nodes and spleens tended to be more depleted of lymphocytes

in these rabbits. Late clinical signs in longer surviving or recovering rabbits were fairly typ-

ical of those described for myxomatosis caused by moderately attenuated viruses [5], with

the exception that the amyxomatous viruses did not induce secondary lesions (S4 Table; S5

Table).

Virus levels in the primary lesion

The prolonged duration of high virus titres in the epidermis of primary or secondary lesions

or in sites such as eyelids or ears is critical for transmission by arthropod vectors [9]. In gen-

eral, longitudinal biopsy samples showed that levels of virus in the primary lesions, measured

by qPCR, increased over the first 10 days to> 108 copies/mg and were then reasonably stable,

albeit with reduced numbers of rabbits available for biopsy at later time points (S2 Fig). How-

ever, two virus infections had consistently lower virus loads: the grade 5 Perthshire 1527 and

the grade 2/3 Yorkshire 127 strain. Both viruses had the nodular myxomatous phenotype and

the lower loads were probably due to cell destruction in the epidermis. Despite the limited

nature of the primary lesion in the amyxomatous phenotypes (Fig 5I) they had very high levels

of virus. Similar results were obtained with titres measured by plaque assay on autopsy samples

(S6 Table). Titres in the Lu infected rabbits were also relatively low, likely because of the highly

scabbed and degenerate nature of the lesion (S6 Table; Fig 5). Biopsies were not collected from

rabbits infected with Yorkshire 135 or Lu. Taken together with the histological and gross

appearance of the primary lesions, these results indicate that the tissue response to the amyxo-

matous viruses is entirely different to that induced by Lu, but that this is not due to reduced

virus replication.

Multiple evolutionary pathways of myxoma virus
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Genomic differences between viruses associated with clinical phenotype

Despite the observed differences in disease phenotype and virulence, viruses within each line-

age exhibit limited sequence divergence. For example, Yorkshire 127 caused the nodular cuta-

neous phenotype while the closely related Yorkshire 135 and Yorkshire col caused the

amyxomatous phenotype (Fig 3). All three Yorkshire viruses have lost the functional domain

of the M005L/R gene and have disrupted M009L and M153R genes (Table 2). There are six

Fig 4. Acute collapse syndrome. (A) Epidermal hemorrhages 1–2 cm in diameter developed over 4–5 hours in

the epidermis (Yorkshire Col day 12). (B) Severe pulmonary oedema with fluid and froth filling the trachea

(arrowed) and bronchi and swollen wet lungs (Perthshire 2082 day 15). (C) Hemorrhages (arrowed) in lungs

(Perthshire 2082 day 14). (D) Bacteria (arrows) in pulmonary blood vessels (Perthshire 2082 day 15; scale bar

20 μm). (E) Popliteal lymph node showing complete loss of lymphocytes and massive numbers of bacteria

(arrows) staining purple throughout the sinuses (Perthshire 2282 day 12; scale bar 200 μm). (F) Hind leg muscle

showing bacteria (arrows) in blood vessels (Perthshire 2282 day 12; scale bar 20 μm).

doi:10.1371/journal.ppat.1006252.g004
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amino acid differences between Yorkshire 135 and Yorkshire Col and seven between York-

shire 135 and Yorkshire 127 (S7 Table).

The Perthshire lineage 1 viruses are more complicated, as the 2008 viruses (1527, grade 5

and 1537, grade 3/4) have a disrupted M002L/R gene and Perthshire 1527 has a disrupted

M135R gene; both are virulence determinants in Lu [34]. These genes are intact in the amyxo-

matous 2009 Perthshire 1792 virus (grade 2). As with the Yorkshire lineage, these viruses only

differ at a small number of amino acid sites (S8 Table).

Both Perthshire lineage 2 viruses tested had the amyxomatous phenotype and were of grade

3 virulence. Apart from the premature termination of M008L/R in 2082, there are only four

Fig 5. Nodular and amyxomatous phenotypes. (A) Lu day 10: grossly swollen almost granulomatous eyelids and swollen drooping ears; note the

large swelling at the base of the ears. (B) Perthshire 1527 day 10; secondary lesions on ears but otherwise mild clinical signs with this grade 5 virus.

(C) Perthshire 1537 day 10: moderately swollen ears, eyelids and head. Despite the alert appearance and mild clinical signs, the rabbit died with acute

collapse less than 24 hours later. (D) Lu day 10: domed primary lesion oozing at top. (E) Lu day 12: section through primary lesion. (F) Perthshire

1792 day 10: amyxomatous phenotype showing very limited reaction at inoculation site. (G) Lu: histology of upper part of primary lesion day 12.

Destruction of epidermis and dermis with scab formation and hemorrhage (arrowed); H: remnant hair follicle. (H) Lu primary lesion–deeper within the

same lesion; short arrow indicates blue-grey staining mucinous material; long arrow indicates muscle necrosis and inflammatory cells (neutrophils). (I)

Perthshire 2282 day 14: histopathology of primary lesion; note relatively normal architecture with some hyperplasia of epidermis and disruption of

collagen fibres in dermis. E: epidermis; D: dermis; H: hair follicle. Scale bars = 100 μm.

doi:10.1371/journal.ppat.1006252.g005
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amino acid differences between these viruses (S9 Table). Phenotypically, it was difficult to dif-

ferentiate these grade 3 viruses from the grade 2 Perthshire 1792 and Yorkshire Col.

Overall, these results suggest that single amino acid changes can have a major impact on

disease phenotype and virulence gene disruption may be compensated by epistatic mutations

or other mechanisms.

Discussion

Our genome-scale evolutionary analysis reveals that multiple lineages of MYXV have circu-

lated in UK rabbits. In particular, the single lineage of viruses from Yorkshire and the two line-

ages present in Perthshire clearly diverged relatively early in the epizootic and have evolved

independently ever since. This separation of the English and Scottish viruses could reflect a

simple biogeographic division and a lack of virus gene flow, particularly since the European

rabbit flea (Spilopsyllus cuniculi) is the main arthropod vector in the UK so that virus spread

depends on movement of rabbits carrying fleas [47, 48]. However, the phylogenetic separation

between the two Scottish lineages is harder to explain as they were sampled within three kilo-

metres of each other. Because these two lineages differ in the range of temporal sampling

(2008–2009) and (2009–2013) it is possible that the later sampled lineage is a more recent

invader into the study area and has outcompeted the previously existing lineage. Anecdotally,

in 2009 this study site experienced a high mortality of rabbits due to myxomatosis, compatible

with the possible invasion of a new strain into the area.

Importantly, our comparison of MYXV genome sequences from the UK and Australia con-

firms previous conclusions that there is no single pathway to attenuation from the progenitor

viruses or from attenuation back to virulence [20]. Indeed, it is striking that there are almost

no shared mutations between the viruses from the two radiations despite the large number of

complete genomes now sequenced. Hence, evolutionary success in these large genome DNA

viruses has clearly resulted from the exploration of multiple evolutionary pathways along

which different disease phenotypes appear. Indeed, our animal trials reveal that the clinical

phenotype of a number of the UK viruses showed dramatic changes compared to the progeni-

tor Lu virus, as well as within and between the modern viral lineages.

Generalized disease seems critical for efficient virus transmission in European rabbits, with

rabbits that survive infection (and therefore control virus replication) being poor transmitters

[10]. In addition, resistance is manifest as control of virus replication rather than prevention of

infection [49, 50, 51], so is likely to select for virus mutations that can overcome this control.

The emergence of genetic resistance in the wild rabbit population likely shifted selection

towards more virulent viruses (when tested in non-resistant rabbits) to maintain this nexus

between virulence and transmission, in turn setting up an arms race between host and virus.

As we describe here, this can lead to dramatic changes in the disease phenotype in non-resis-

tant rabbits.

There is an implicit idea that changes in virulence will be due to mutations in genes

involved in immunomodulation or host-range functions [40]. The role of many MYXV genes

in virulence has been defined by single gene knock-out studies using the Lu strain or an early

French derivative, the T1 strain [52]. In particular, the M005L/R and M153R genes have each

been shown to have major virulence functions. Rabbits infected with knock-outs of either gene

had a much lower CFR: 30% for ΔM153R and 0% for ΔM005L/R compared to 100% for Lu [32,

29]. However, all three Yorkshire viruses have mutations that are predicted to disrupt both

these genes causing loss of key functional domains [33, 30] but have CFRs of nearly 100%.

This suggests three possible explanations for retained virulence: (i) epistatic mutations com-

pensating for the loss of these genes; (ii) a mechanism for suppressing reading frame
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disruptions; or (iii) functional activity retained by the truncated protein (potentially in a new

role) [53]. Although it seems likely that unique amino acid substitutions are often responsible

for alterations in virulence, the number of such amino acid changes evidently makes specific

virulence determinants difficult to identify. Similarly, the Californian MSW strain of MYXV,

which is found in S. bachmani in North America and is the most virulent strain of MYXV

described for European rabbits [5, 54], has disrupted multiple virulence genes, suggesting that

multiple epistatic mutations play a role in virulence determination [36].

As well as broad trends in virulence during the early radiation, changes were also observed

in the clinical appearance of infected rabbits, with a relatively rapid evolution of a flat lesion

morphology in both Australia and Europe rather than the domed SLS and Lu lesions [5, 15].

More recently, the amyxomatous phenotype in European isolates has been distinguished from

the nodular type of disease by having few or no cutaneous lesions and, in some cases, appar-

ently prolonged incubation periods [44, 55, 56]. For some Australian isolates the amyxomatous

phenotype is seen in laboratory rabbits, although the same virus causes a nodular phenotype

when tested in resistant wild rabbits suggesting that changes in the pathogenesis of the disease

have occurred due to selection in resistant wild rabbits [57].

Combined, these data strongly suggest that the accumulation of mutations in field strains of

MYXV has caused changes in the pathogenesis of myxomatosis, such that we now see a spec-

trum of disease types that depend on the interactions between the virus genome and the genet-

ics of the rabbit and non-genetic (rabbit) factors such as microbial flora, parasites, and abiotic

environmental factors including temperature [58]. As an example, field isolates of European

amyxomatous viruses tested in specific pathogen-free laboratory rabbits caused relatively

minor disease with few fatalities. However, the same viruses tested in rabbits from commercial

rabbitries caused significant disease with severe bacterial bronchopneumonia as the most com-

mon cause of death [46, 59]. Different environmental conditions and vectors may therefore

facilitate selection of virus strains that are more successful in particular niches. For example, in

the farmed domestic rabbit populations in Europe where there has been no selection for resis-

tance, we may expect low virulence strains predominantly transmitted by contact, strains with

prolonged incubation periods [60, 61], or high virulence strains that can overcome imperfect

vaccination [60, 56, 37].

With the exception of Yorkshire 127, rabbits that died or required euthanasia early in the

course of the disease had very different clinical signs from those infected with Lu. Hemorrhage

and acute pulmonary oedema were common together with high titres of virus in lungs and

liver. In some cases, large numbers of coccoid bacteria were present in multiple tissues, but did

not elicit a visible cellular inflammatory response. Lymphocyte depletion from lymph nodes

and spleens was relatively common. Despite extremely high virus titres, there was very limited

pathology in the epidermis and dermis of the primary inoculation site. This suggests an acute

overwhelming of the rabbit immune response triggered by high viral titres in critical tissues.

This outcome is also clearly distinct from the secondary gram negative bacterial infections

(Pasteurella multocida, Bordetella bronchiseptica) described in the upper respiratory tract for

rabbits infected with the progenitor viruses or the bacterial bronchopneumonia described with

isolates from rabbit farms [59]. In our study, rabbits that did not die of acute disease developed

more typical signs of myxomatosis, although upper respiratory tract occlusion and discharge

was relatively mild, possibly reflecting the specific-pathogen free status of the rabbits.

Whether the difference in survival time and clinical disease between the acutely affected

animals and the more chronically affected longer term survivors is related to genetic factors in

the outbred rabbits or some stochastic factor early in the course of disease is not clear, but

these animals clearly have a different form of the disease. Virulence, using the definitions of

Fenner and Marshall (1957), essentially meant the AST. However, this raises the question of
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what virulence means in terms of how a strain of MYXV causes disease? Does a more virulent

virus cause a different disease, or are there many pathways to death in an infected rabbit such

that the phenotype seen may be due to which particular mechanism occurred in an individual

rabbit. Thus, in one animal we see hemorrhage and pulmonary oedema, yet in another we see

acute death without pulmonary oedema and hemorrhage, which might have developed if the

animal had survived a few hours longer. It is possible that some of the longer-term survivors

have a milder form of the disease at this stage and will go on to develop the more typical form

of myxomatosis, and this pathway seems to predominate in attenuated viruses such as Perth-

shire 1527. Clearly, virulence in this case is a more nuanced concept than generally depicted in

studies of its evolution.

The parallel evolution of virulence in MYXV in the Australian and British epizootics was

evidently not accompanied by the acquisition of similar mutational changes. Our detailed

examination of genomics and disease phenotypes of recent isolates of MYXV from the UK

radiation reveals that highly virulent and highly attenuated viruses were present in the field,

but that disruptions to major virulence genes were not necessarily associated with attenuation.

More striking was that the disease caused by many of these viruses was clinically distinct from

that caused by the progenitor Lu strain, with alterations in tissue tropism and pathogenesis in

acutely affected rabbits, again demonstrating that the virus is able to explore many pathways to

evolutionary success.

Materials and methods

Ethics statement

Sampling was performed according to field procedures approved by the Institutional Animal

Care and Use Committee of The Pennsylvania State University (IACUC # 26383 and 34489).

Animal experiments were conducted under protocols approved by the Institutional Animal

Care and Use Committee, Pennsylvania State University (IACUC # 33615 and 42748). All ani-

mal work adhered to the guidelines laid out in the Guide for the Care and Use of Laboratory

Animals. 8th ed. National Research Council of the National Academies. National Academies

Press Washington DC.

Sample collection, virus isolation and DNA preparation

The virus isolates sequenced in this study are listed in Table 1. Samples were taken from rab-

bits with clinical myxomatosis gathered at multiple locations on two sites, the first located in

Perthshire in central-eastern Scotland, and the second in North Yorkshire, England, collected

as part of other field studies [62, 63, 64, 65]. An early isolate sampled in Belfast, Northern Ire-

land in 1955, was also sequenced. All viruses were isolated in RK-13 cells and passaged

between 1 and 3 times to prepare seed and working stocks, from which virus DNA was pre-

pared [66]. An aliquot of virus from the DNA preparations was used for rabbit infections.

Genome sequencing and assembly

Virus genomes were sequenced on three different platforms: the Illumina HiSeq 2000 and

MiSEq, and the Ion Torrent. For the HiSeq200, template viral DNA was processed using a Tru-

Seq DNA sample preparation kit (Illumina) to produce a multiplex library for sequencing.

Briefly, extracted viral genomic DNA (gDNA) was sheared with a Covaris AFA system, creat-

ing fragments of 50 to 7,000 bp. After end-repair, purification, and 30 adenylation, bar-coded

sequencing adapters were ligated, and 400- to 500-bp fragments were purified. Fragment

enrichment and clean-up were performed with AMPure XP beads. Individual library
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components were quantitated by quantitative PCR (qPCR), normalized, and pooled into a

final sequencing library consisting of eight different viral genomes (this included seven MYXV

strains that were analyzed in a separate study), which was run on an Illumina HiSeq2000 to

generate 100-bp paired-end reads. For the MiSeq, libraries were produced using the Nextera

XT DNA kit (Illumina). Extracted DNA samples were quantified using a Qubit fluorometer

and 1ng of each sample was used as input DNA. The standard workflow was followed: duel

index barcoding of the tagmented DNA was done according to the low plexity requirements

and 1.8x AMPure XP beads were used to purify the library DNA. Library normalization was

performed using Illumina beads. Multiplexing of the final library occurred according to Illu-

mina recommendations. Briefly, 5 μl of each of the 14 finished, bead-normalized libraries were

combined into a library pool. Next, 24 μl of this mix was transferred to a new tube containing

576 μl HT1 buffer, mixed well, and placed at 96˚C for 2 minutes to denature, followed by cool-

ing on ice for at least 5 minutes. Denatured 8pM PhiX was then combined with the denatured

library pool in a total volume of 600 μl and a final concentration of 5% to produce the final

sequencing pool. Sequencing was performed on an Illumina MiSeq using either 2x75bp V3 or

2X250 V2 paired-end kits, yielding approximately 14.5M paired-end reads for each run. Iso-

lates 1527 and 2282 were sequenced on the Ion Torrent. Genomic DNA was sheared and con-

verted into libraries with the Ion Xpress Plus fragment kit (Ion Torrent) by following the

manufacturer’s instructions. Briefly, 200ng of gDNA was sheared for 20 minutes followed by

purification, nick repair and adapter/barcode ligation. The DNA libraries were then size

selected on the E-Gel SizeSelect (Invitrogen) platform to yield insert sizes of ~200 bp. Libraries

were quantitated on the Bioanalyzer (Agilent) and combined in equimolar amounts to make

the final sequencing pool. This pool was sequenced on the Ion Torrent with a 316 chip and a

200 base read length target, yielding 2.6M useable reads.

Demultiplexed reads were quality trimmed using the trim.pl perl script (http://wiki.

bioinformatics.ucdavis.edu/index.php/Trim.pl) and assembled with the Velvet de novo assem-

bler iterated across a range of k-mers from 45 to 65 for each assembly [67]. Contigs were

ordered into a single scaffold for each genome using the Abacas.pl script [68] and the Lu

genome as reference (GenBank accession AF170726), and for each assembly the k-mer that

generated the most complete coverage of the reference genome was selected for finishing and

downstream analysis. The quality of each scaffold was verified by remapping the untrimmed

reads to the assembly using Smalt (http://www.sanger.ac.uk/science/tools/smalt-0). One

region of ambiguous assembly was amplified by PCR and sequenced using Sanger methodol-

ogy to confirm the assembly. A nucleotide deletion within a homopolymer run in the M153R
gene was also confirmed by Sanger sequencing. In every case, only one complete or near com-

plete copy of the terminal inverted repeat (TIR) was assembled at either the 5’ or the 3’ end.

The Belfast 1955 isolate was assembled de novo on a 100K sub-sample of the cleaned, paired-

end reads using CLC Genomics (version 8) with a word and bubble size of 30 nt and 150 nt,

respectively. This yielded two contigs corresponding to the core genome (~138K) and TIR

(~11K). The TIR contig was duplicated and reverse complemented before manually assem-

bling onto the core genome, and then all the cleaned, paired-end data was re-mapped back to

confirm final assembly.

Genome annotation was transferred from the Lu strain to the newly sequenced MYXV

genomes using the Rapid Annotation Transfer Tool [69]. EMBL flatfiles of transferred gene

models were then inspected and compared to the Lu reference using the Artemis Comparison

Tool [70]; incorrect models were corrected, and new gene models added where transfer had

not occurred.
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Nucleotide sequence accession numbers: all genome sequences generated here have been

deposited in GenBank (https://www.ncbi.nlm.nih.gov/) under accession numbers

KY548792-KY548813 (S10 Table).

Evolutionary analysis

The 22 MYXV genome sequences determined here were combined with 35 complete genomes

available on GenBank, representing 25 from the Australian outbreak (including the SLS release

strain) and 10 from Europe (including the Lu release strain) (S10 Table). These sequences

were initially aligned in MUSCLE [71] and adjusted manually, resulting in a final sequence

alignment data set of 57 sequences 163,645 bp in length. Because the sequences are highly con-

served, the locations of synonymous and non-synonymous mutations in these sequences were

determined manually.

An initial phylogenetic tree of these sequences was inferred using the maximum likelihood

procedure available in the PhyML package [72]. This analysis utilized the HKY+Γ4 model of

nucleotide substitution and NNI+SPR branch-swapping. To test for the presence of recombi-

nation we utilized the RDP, Genecov and Bootscan methods (with default settings) available

within the RDP4 package [73]. No significant evidence for recombination was found.

To determine the rate of MYXV evolution we first assessed the degree of clock-like struc-

ture in the data using a regression of root-to-tip genetic distances on the ML tree inferred

above against the year of virus sampling using TempEst [74]. As this analysis revealed strong

temporal structure (see Results), we next inferred the rates and dates of viral evolution using

the Bayesian Markov chain Monte Carlo (MCMC) approach available in the BEAST package

[75]. For this analysis we used a range of nucleotide substitution (HKY+Γ4, GTR+Γ4), molecu-

lar clock (strict, relaxed uncorrelated lognormal) and demographic (constant, Bayesian sky-

ride) models. As these gave strongly overlapping results we based our analysis on the simplest

model: HKY+Γ4, strict clock, constant population size (Fig 1). All analyses were run twice and

for sufficient time (100 million generations) to ensure that convergence was achieved, with sta-

tistical uncertainly manifest in values of the 95% highest posterior distribution (HPD). The

posterior distribution of trees from the HKY+Γ4, strict clock, constant population size run was

also used to infer a maximum clade credibility (MCC) tree (Fig 1). The degree of support of

individual nodes is depicted as posterior probability values.

Animal studies

New Zealand White male laboratory rabbits (Oryctolagus cuniculus) of four months of age

were purchased from Harlan Laboratories (Oakwood facility). Rabbits were specific-pathogen-

free for Pasteurella multocida and Bordetella bronchiseptica. Animals were housed in individual

cages on a 12h light regime, fed 125 g of standard pellets per day and allowed 10 days to accli-

mate in the facility prior to infection.

Groups of six rabbits were inoculated with 100 pfu of virus intradermally in the rump and

monitored closely over the course of the infection. Daily clinical examination included: rectal

temperature, body weight, primary lesion size and shape at the inoculation site, secondary

lesion size and distribution, plus semi-quantitative scoring on a 0 to 3 scale for demeanour,

eyelid swelling, ear swelling, anogenital swelling, scrotal oedema, blepharoconjunctivitis, nasal

discharge and respiratory difficulty. Food and water intake were recorded and fecal and uri-

nary output monitored by inspection of collecting trays under the cages. Rabbits were eutha-

nized based on the degree of clinical severity using respiratory difficulty, depression, inanition,

reluctance to move, weakness on handling, weight loss and failure to eat or drink as indicators;

any rabbit exhibiting pain or with a subnormal temperature was immediately euthanized.
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To monitor virus replication at the primary inoculation site, 1 mm diameter dermal punch

biopsies were collected: in each group, three rabbits were sampled at day 5 post-infection and

three at day 7; thereafter, each surviving rabbit was sampled at 5 day intervals. DNA was pre-

pared using the DNeasy kit (Qiagen).

Rabbits were autopsied as soon as possible after death and bodies refrigerated if autopsy

was delayed. Samples of the primary lesion and other tissues were collected for virus titration

and histology but only from euthanized rabbits or rabbits that died within 1–2 hours prior to

autopsy. Blood samples were collected from the marginal ear vein at days 0 and 10, or follow-

ing euthanasia, by cardiac puncture. Hematology was performed by the Centralised Biological

Laboratory Facilities, the Pennsylvania State University.

Challenge infections with Yorkshire 135 in immune rabbits

Because of the unusual virulence of the Yorkshire 135 virus, we tested whether there was any

adventitious agent in the virus preparation by challenging immune rabbits with Yorkshire 135.

The only reaction was a swelling at the inoculation site, which resolved by day 6. This is typical

of what is seen when immune rabbits are challenged. While this does not completely exclude

an adventitious agent that was only pathologic in the context of a highly immunosuppressive

MYXV infection, it strongly supports the hypothesis that the peracute disease seen with York-

shire 135 was indeed due to MYXV.

Survival analysis

To enable comparison with previous studies of MYXV, survival times (ST) from inoculation

to death were estimated for rabbits that were euthanized as follows: (i) moribund rabbits were

assigned the time of euthanasia as the ST; (ii) rabbits that were not expected to survive the next

24 hours were assigned an additional ST of +12 hours; and (iii) rabbits euthanized for humani-

tarian reasons were assigned a ST of +48 hours. Animals found dead were assigned a ST half-

way between the time of last observation and finding the body. Average survival times (AST)

for each group were calculated from individual ST normalized using the procedure of Fenner

and Marshall (1957) [5] as log10(ST-8) and then back-transformed; a survival time of 60 days

was assigned to rabbits that recovered or were alive at the end of the trials and considered

likely to recover. If more than two rabbits survived, the virulence grade was assigned based on

the CFR and clinical severity. Virulence grades were based on Fenner and Marshall (1957) [5]

as modified by Fenner and Woodroofe (1965) [43] (Table 4). Data were also analysed using

Kaplan-Meier survival plots (using actual inferred survival times rather than the normalized

survival times) and tested for statistical significance by log rank test implemented in

SigmaPlot.

Real-time PCR

Quantitative PCR (qPCR) was performed on an ABI 7500-fast machine, using the Quantifast

Sybr green kit (Qiagen), by amplification of a 126 bp fragment (nt 584–710) from the M080R
gene from DNA extracted from primary lesion biopsies. This was quantified on a standard

curve using a linearized control plasmid containing a 642 bp region of the M080R gene (nt

Table 4. MYXV virulence classification.

1Grade 1 Grade 2 Grade 3A Grade 3B Grade 4 Grade 5

CFR >99 95–99 90–95 70–90 50–70 <50

AST � 13 14–16 17–22 23–28 29–50 n/a

doi:10.1371/journal.ppat.1006252.t004
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241–883). None of the UK viruses have mutations in this sequence. Virus titres were expressed

as genome copy number/mg tissue. The qPCR primers used were: M080 qPCR Forward: 5’ TA

TCAAACAACCTCCGCATACC 3’ (M080R 584–605) and M080 qPCR Reverse: 5’ CTCCCA

TAACGCTTCCGAC 3’ (M080R 710–692)

Plaque assays

Samples of the primary lesion, lung, liver, spleen, and right popliteal lymph node were col-

lected at autopsy from euthanized rabbits. Tissues were homogenized by Tissuelyser (Qiagen).

Virus was titrated on RK-13 cell monolayers as previously described [49] with titres expressed

as pfu/g of tissue.
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