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SUMMARY. Marek’s disease virus is a herpesvirus of chickens that costs the worldwide poultry industry more than US$1 billion
annually. Two generations of Marek’s disease vaccines have shown reduced efficacy over the last half century due to evolution of the
virus. Understanding where the virus is present may give insight into whether continued reductions in efficacy are likely. We
conducted a 3-yr surveillance study to assess the prevalence of Marek’s disease virus on commercial poultry farms, determine the
effect of various factors on virus prevalence, and document virus dynamics in broiler chicken houses over short (weeks) and long
(years) timescales. We extracted DNA from dust samples collected from commercial chicken and egg production facilities in
Pennsylvania, USA. Quantitative PCR was used to assess wild-type virus detectability and concentration. Using data from 1018
dust samples with Bayesian generalized linear mixed effects models, we determined the factors that correlated with virus prevalence
across farms. Maximum likelihood and autocorrelation function estimation on 3727 additional dust samples were used to
document and characterize virus concentrations within houses over time. Overall, wild-type virus was detectable at least once on 36
of 104 farms at rates that varied substantially between farms. Virus was detected in one of three broiler-breeder operations
(companies), four of five broiler operations, and three of five egg layer operations. Marek’s disease virus detectability differed by
production type, bird age, day of the year, operation (company), farm, house, flock, and sample. Operation (company) was the
most important factor, accounting for between 12% and 63.4% of the variation in virus detectability. Within individual houses,
virus concentration often dropped below detectable levels and reemerged later. These data characterize Marek’s disease virus
dynamics, which are potentially important to the evolution of the virus.

RESUMEN. Vigilancia a nivel de industrias para el virus de la enfermedad de Marek en granjas avı́colas comerciales.
El virus de la enfermedad de Marek es un herpesvirus de pollos que cuesta a la industria avı́cola mundial más de mil millones de

dólares anuales. Dos generaciones de vacunas de la enfermedad de Marek han mostrado una eficacia reducida durante el último
medio siglo debido a la evolución del virus. El conocimiento acerca de donde se encuentra presente el virus puede dar una idea de la
probabilidad acerca de la continuación de las reducciones en la eficacia. Se realizó un estudio de vigilancia de tres años para evaluar
la prevalencia del virus de la enfermedad de Marek en las granjas avı́colas comerciales, para determinar el efecto de varios factores
sobre la prevalencia del virus y para documentar la dinámica del virus en casetas de pollos de engorde a lo largo de perı́odos cortos.
Se extrajo el ADN de muestras de polvo recolectadas de instalaciones comerciales de pollo y producción de huevos en Pennsylvania,
en los Estados Unidos. Se utilizó un método de PCR cuantitativo para evaluar la detección y la concentración del virus de tipo
silvestre. Utilizando datos de 1018 muestras de polvo con modelos Bayesianos lineales generalizados de efectos mixtos se
determinaron los factores que se correlacionan con la prevalencia del virus en las granjas. Se utilizó la estimación por la máxima
verosimilitud y autocorrelación en 3727 muestras de polvo adicionales para documentar y caracterizar las concentraciones del virus
dentro de las casetas a lo largo del tiempo. En general, el virus de tipo silvestre fue detectable al menos una vez en 36 de 104 granjas
en tasas que variaban sustancialmente entre las granjas. El virus fue detectado en una de tres operaciones de reproductores pesados,
cuatro de cinco operaciones de pollos de engorde y tres de cinco operaciones de aves de postura de huevo. La detección del virus de
la enfermedad de Marek fue diferente dependiendo del tipo de producción, edad de las aves, dı́a del año, operación (empresa),
granja, caseta, parvada y muestra. La operación (empresa) fue el factor más importante, representando entre el 12% y el 63.4% de la
variación en la detección del virus. Dentro de las casetas individuales, la concentración del virus a menudo disminuyó por debajo de
los niveles detectables y resurgió más tarde. Estos datos caracterizan la dinámica del virus de la enfermedad de Marek, que son
potencialmente importantes para la evolución del virus.

Key words: Marek’s disease virus, surveillance, epidemiology, virulence evolution, vaccine escape

Abbreviations: AIC ¼ Akaike Information Criterion; DIC ¼ Deviance Information Criterion; HVT ¼ herpesvirus of turkeys;
MD ¼Marek’s disease; MDV ¼Marek’s disease virus; qPCR ¼ quantitative PCR; VCN¼ virus copy number

Marek’s disease (MD), caused by Marek’s disease virus (MDV,

Gallid herpesvirus II), is an economically important disease of

chickens. Since the development of the first vaccine against this

disease, mass vaccination has been a key feature in sustaining

industrial-scale poultry production (27). MD vaccines are described

as ‘‘leaky’’ because they protect vaccinated hosts from developing

clinical signs of disease, but they nonetheless allow for infection and

onward transmission of the virus (23,38,47). This means that the

virus can persist and potentially evolve in vaccinated flocks (39).

Nevertheless, very little is known about the distribution of the virus

in the field. Here, we surveilled virus across the industry by sampling

dust (the infectious vehicle) from commercial chicken facilities

located throughout Pennsylvania from 2012 to 2015. We use these

data to ask where MDV is found, how its prevalence differs across

the industry, and how its concentration changes within flocks over

time.DCorresponding author: E-mail: dak30@psu.edu
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MDV is a herpesvirus (9) that is transmitted through inhalation

of virus-contaminated dust (13). Once inside a host, the virus goes

through an incubation period of about 1 wk, after which new virus

particles are first shed from feather follicle epithelial cells (3,22). The

shedding of this infectious virus co-occurs with the shedding of

epithelial cells, so the virus can be found in ‘‘chicken dust’’ (10), a

by-product of chicken farming made up of sloughed off epithelial

cells, feathers, fecal material, chicken feed, and bedding material

(12). Once shedding is initiated, it is thought to occur for the rest of

the chicken’s life (47).

MD was first described over a century ago as a relatively mild

polyneuritis condition in chickens. Over time the disease has

increased in severity in unprotected chickens due to altered rearing

conditions and evolution of the virus (31,39,46). Two generations of

MD vaccines have been undermined by virus evolution, and this

evolutionary trajectory has been well documented (46). Whether the

efficacy of existing vaccine control strategies will decline in the future

is an open question (28). The answer partially depends on the

ecology of the virus, because evolutionary outcomes can vary greatly

depending on ecological details, which in this case depend on where

in the industry the evolution is occurring (1,39).

Early efforts to quantify MDV prevalence in the field used

serologic data to demonstrate that infection was extremely prevalent

(5,11,20,47). Clinical disease and production losses coupled with

these observations motivated near-universal vaccination in commer-

cial poultry farming in the United States and many other nations.

More recently, virus prevalence has been inferred from condemna-

tion data (26,34,45) and questionnaires (15), but the reliability of

these methods are limited by changes in disease and perception of

disease that may occur irrespective of virus dynamics (26). The

development of quantitative PCR (qPCR) protocols specific for

MDV have made it possible to detect and quantify virus collected

from the field (2,3,21). Four studies have used qPCR with field

samples to study virus dynamics, three in Australia (17,37,44) and

one in Iraq (43). There are many differences in chicken and egg

production between these countries and the United States, with

perhaps the most notable being that vaccination is nearly universal

among commercial farms in the United States (44). Here, we

performed qPCR on samples collected from chicken farms

throughout Pennsylvania to directly examine MDV dynamics on

commercial poultry farms. The farms used in our study encompass

much of the diversity of industrial-scale, commercial chicken-meat

and egg production.

Commercial poultry farming is highly structured (Fig. 1).

Industrialized commercial chicken production is broadly divided

into egg laying birds, broiler birds, and layer-breeder or broiler-

breeder birds. Each production type has potentially different natural

histories, genetics, and management practices. Further structure

exists within these production types because of differing manage-

ment practices between operations (companies), for example, from

targeting particular sectors of the poultry market (e.g., kosher,

organic, live bird market, cage-free eggs), or by sharing biosecurity

practices, equipment, and feed mills. Within an operation the

behaviors of the people who manage the birds on the farm could, in

turn, affect virus dynamics. Within single farms, there are usually

multiple houses. Within these houses, there are successive flocks of

birds. Our goal was to quantify the relative importance of these

factors on the variation we observed in the prevalence of MDV. This

is a critical first step in evaluating risk factors both for disease

outbreaks, and for virus evolution that might undermine current

vaccine strategies and lead to increased pathogen virulence.

MATERIALS AND METHODS

Background. Pennsylvania has commercial-scale production of both
chicken meat and eggs. Most broiler flocks follow an all-in, all-out
approach. Some, however, especially farms rearing colored breeds, have
multiple ages per premises, while maintaining all-in, all-out practices for
individual houses. Down time is typically at least 1 wk, but it can range
from as little as 1 day to in excess of several weeks. Most of these farms
are cleaned out completely during this down time between flocks, and
the farms typically do not reuse litter. Breeder flocks use all-in, all-out
approaches for each house, with cleaning and disinfecting before new
birds are placed. Nevertheless, some have multiple ages on single
premises in different houses. Caged layers are typically reared on
multihouse complexes, where each house follows an all-in, all-out
system, with cleaning and disinfecting between flocks. Different houses,
however, remain populated with different-aged birds to achieve
continuous egg production. Floor layers are typically reared on the
premises with one house and one age of bird, or two houses, usually of
different age from each other. Each house typically follows an all-in, all-
out approach, with cleaning and disinfection before restocking.

Three live vaccine virus strains are used on Pennsylvania farms to
control MD: HVT, SB-1, and Rispens. These strains are related, but not
identical, to wild-type virus. Once vaccinated, a bird can shed these
vaccine strains (3,22), so we used the primer-probe combination of
Baigent et al. (2) that is capable of quantifying wild-type virus in the
presence of each of the vaccine strains. This specificity is necessary

Fig. 1. Structure of the data in our study. (Left) Schematic example
of a sampling hierarchy generated by the structure of the poultry
industry. Reading from the bottom up, multiple samples were collected
from a single flock, multiple flocks were reared in a single house over
time, multiple houses were located on a single farm, multiple farms were
associated with a single operation (company), and multiple operations
were rearing chickens that typically belonged to a single production
type. This created a nested hierarchical structure in the data. One
example of such a hierarchy is shown here. (Right) Actual number of
unique levels are given by ‘‘C’’ for the cross-sectional data, ‘‘L’’ for the
longitudinal data, ‘‘A’’ for the air tube data, and ‘‘F’’ for the feather tip
data.
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because almost all chickens in Pennsylvania reared for commercial
production are vaccinated against MD. Broiler chickens are typically
vaccinated using a combination of HVT and SB-1, although Rispens
vaccine virus is used under some circumstances. Egg-laying chickens and
broiler-breeder chickens are typically given Rispens vaccination, often in
combination with HVT, SB-1, or both. This was confirmed in our
samples through the detection of the Rispens vaccine virus in at least
some dust samples from each of these operations. In Supplemental
Appendix S1, we show that HVT and SB-1 detection in dust is
uncorrelated with wild-type virus detection and that Rispens vaccine
virus is negatively correlated with wild-type virus detection.

Sample collection. The dust that collects on fan covers, or ‘‘louvers’’
shows less spatial variation in virus concentration than dust that collects
on ledge-like surfaces (Supplemental Appendix S2), so samples used in
this study were collected by scraping dust from fan louvers. Logistical
constraints including those imposed by biosecurity concerns, industry
participation, total availability of farms, and time-varying presence of
chicken cohorts resulted in a sampling schedule best described formally
as haphazard rather than random. Given these constraints, we visited
and collected dust from as many different farms as possible to gain
insight into whether and where the virus was detectable. A summary of
our sample sizes is available in Fig. 1. Between two and six samples were
collected from each house during each visit. In total, we visited 104
unique commercial combinations of farm and operation (three farms
changed operations during surveillance). These combinations were
comprised of 29 broiler-breeder facilities, 52 broiler facilities, and 23
egg-laying facilities (no egg-breeder facilities were included). On five
broiler farms where high concentrations of virus were detected, we
collected approximately weekly to quantify changes in virus concentra-
tion over time (hereafter referred to as the ‘‘longitudinal data’’). Each of
these five farms was visited between 48 and 133 times (mean 98.4). This
subset of data includes 3727 samples, collected across 149 flocks, reared
in 14 houses on five farms, representing four operations (Fig. 1). We
quantified MDV prevalence by using all fan dust samples, with the
exception of those from these five farms and 103 other samples for
which bird age was unavailable. We refer to this subset of data as the
‘‘cross-sectional data.’’ This subset is comprised of 1018 samples,
collected from 297 flocks, reared in 192 houses on 90 farms,
representing 13 operations with three production types (Fig. 1). All
fan dust samples collected during this study are being stored indefinitely
at�808 C.

On two of the farms included in the longitudinal data study, we also
collected data on airborne virus concentration and host infection status.
Airborne virus concentration was assessed by securing six 1.5-ml
centrifuge tubes to the arms, hips, and legs of two of the authors during
routine dust collection. Tubes were oriented horizontally with the tops
pointing to the front of the collector’s body, opened upon entering the
house and closed upon leaving. This period lasted approximately 15–20
min. These data are hereafter referred to as the ‘‘air tube data.’’ They are
comprised of 609 samples from 15 flocks, reared in four houses on two
farms, associated with two operations (Fig. 1). Both farms reared broiler
chickens. Feathers were also collected from individual birds on these
same farms as follows. Two feathers were plucked from the breast of
each target bird. The pulpy proximal end of each feather was clipped
and placed into its own centrifuge tube. Scissors used to clip feathers
were cleaned between birds by using 70% isopropyl alcohol wipes. Ten
birds in total were sampled from each house during each visit (hereafter
referred to as the ‘‘feather tip data’’). Target birds for feather collection
were chosen such that they were spatially distributed throughout the
house. Individual birds were selected at the discretion of the collector,
with a goal of random selection. To account for the possibility of
airborne virus contamination, we also had two control tubes: one tube
was left open during the collection of a single feather from a single bird,
and one tube was left open during the collection of feathers from all 10
birds. These control tubes are distinct from the air tube samples that

were collected immediately before feather samples. In total, we tested
2003 feathers from 20 flocks and four houses (Fig. 1). Feather sampling
was approved by the Institutional Animal Care and Use Committee of
The Pennsylvania State University (Institutional Animal Care and Use
Committee protocol 46599).

qPCR. All samples were brought back to the laboratory and stored at
48 C before processing. Detailed methods regarding DNA extraction
and qPCR can be found in Supplemental Appendix S3. Dust samples
collected from fans were processed in duplicate using a slightly modified
version of the protocol of Baigent et al. (2). Methods were similar for air
tube and feather tip samples, but these samples were processed in
singlicate. DNA for all samples was captured in a final elution volume of
200 ll, and 4 ll of this undiluted elution was used in each qPCR
reaction.

Statistical analysis. Analysis of cross-sectional data.

All analyses were performed in the R statistical computing language
(36). To study the variation in the presence and absence of MDV across
chicken dust samples, we treated our qPCR data as binomial data on a
logit scale. qPCR runs that had at some point crossed the qPCR
fluorescence threshold were treated as positive outcomes, and qPCR
runs that had not been treated as negative outcomes. This method was
similar in effect to running a traditional PCR and checking for the
amplification of a target by using gel electrophoresis. In practice, our
limit of detection was approximately 100 template DNA copies per
milligram of dust (Supplemental Appendix S4), which is close to the
concentration of virus that would be expected if about 20–50 chickens
were infected per flock of 30,000 chickens and virus was randomly
mixed throughout the dust (Supplemental Appendix S5). Feather tip
data were similarly treated as binomial data (Supplemental Appendix
S6).

We analyzed the data using Bayesian generalized linear mixed effects
models (7,16,18). Justification for the modeling choices below can be
found in Supplemental Appendix S7. Our analysis was performed using
the function ‘MCMCglmm’ (18) with family set to ‘‘categorical’’ and
‘‘slice’’ sampling. Depth of coverage ranged from 1 to 90 dust samples,
with a median of 6 (Fig. 2). Models included random effects for
‘‘Operation,’’ ‘‘Farm,’’ ‘‘House,’’ ‘‘Flock,’’ and ‘‘Sample’’ to account for
these levels of clustering in the data. For example, including an effect of
‘‘Sample’’ allowed us to distinguish between technical and biological
variation in virus detection. For each random effect, we used inverse
Wishart priors with scale 5 and df ¼ 3 (Supplemental Appendix S8).
Models also included fixed effects of ‘‘Production type,’’ ‘‘Collection
date,’’ and ‘‘Bird age.’’ For each fixed effect, we used univariate normal
priors with mean 0 and SD 7 (Supplemental Appendix S8). Production
type was fit as a categorical factor with levels ‘‘broiler,’’ ‘‘broiler-
breeder,’’ and ‘‘layer.’’ Collection date was fit as two continuous factors:
the sine and the cosine of 2p/365 times the calendar day that a sample
was collected, to capture seasonal variation (26). Bird age was fit as a
categorical factor by using a spline with knots at cohort ages of 21, 42,
100, and 315 days (19). The spline was generated using the ‘bs’ function
in the package ‘‘splines.’’ We generated five candidate models consisting
of the full model that contains all of the factors listed above, the three
models that lacked exactly one of these fixed effects, and one model that
lacked the random effect of ‘‘Sample.’’ We explored the importance of
the other random effects by examining the magnitude of their estimated
effect sizes.

We ran each model for 4.1 3 106 iterations with a burn-in of 1 3 105

steps, and a thinning interval of 2 3 103. This resulted in 2000
parameter samples for each model run. This process was repeated to
generate three chains in total for each model. Posterior convergence was
tested in three steps, following Kennedy et al. (25). The models were
then compared using the Deviance Information Criterion (DIC). DIC
is a tool, in many ways similar to the Akaike Information Criterion
(AIC) that is useful for comparing the relative goodness of fit of various
models (42). To foster model comparison, we presented DDIC scores,
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which are the differences in DIC between the best model and each

alternative model. Like AIC, there is no precise threshold for

significance of DDIC scores, but Bolker (6) argued that it is on the

same scale as AIC. We therefore followed the suggested rule for AIC (8)

that DDIC scores less than 2 suggest substantial support for a model,

scores between 3 and 7 indicate considerably less support, and scores

greater than 10 suggest that a model is very unlikely.

We also explored the importance of model factors by using fraction of

variance explained (R2), where the calculation of R2 was modified for use

with generalized linear mixed models (29). We presented marginal R2

and conditional R2 values that describe the fraction of variance on the

latent scale of the data that can be attributable to fixed and fixed plus

random effects, respectively. We then extended this method to explore

the contribution to R2 that can be attributed to each single factor in the

model. Credible intervals for all estimates came from the posterior

distributions of the fitted models.

We explored the statistical significance of differences between

production types by performing pairwise comparisons on the estimated

effect sizes of production type. In practice, this was done by asking what

fraction of samples from the posterior estimated a larger effect size for

production type level 1 than for production type level 2 or the reverse.

This value was multiplied by 2 to account for it being a two-tailed

hypothesis test. These tests were performed for all three pairwise
comparisons between broiler-breeders, broilers, and layers.

Previous work has shown that MD associated condemnation rates
historically varied across broad geographic area such as between states
(26). We explored whether there was evidence of clustering in virus
detection across the finer spatial scales found in our cross-sectional data.
We did this by calculating distances and correlations in effect sizes
between each pairwise farm location. We then used the ‘lm’ function to
generate two models. The first model was an intercept only model that
functioned as a null model. The second model was an intercept plus
distance effect model, where distance was transformed by adding 1 and
then taking the log10. The importance of distance was assessed by
performing a likelihood ratio test.

Analysis of longitudinal data. To study the variation in MDV
dynamics within a focal chicken house over time, we used the
quantitative values returned by qPCR analysis, rather than the
presence-absence used for the cross-sectional data, because the
quantitative data are more sensitive to changes in virus concentration.
We assumed lognormal error in these quantities, because variation in
qPCR data tends to occur on a log scale (40). In our analyses, we
therefore transformed the virus-copy-number-per-milligram-of-dust
data by adding 1 and log10 transforming that value. We explored the
suitability of this lognormal assumption for our data in Supplemental

Fig. 2. Summary plots of the cross-sectional data depicting the number of assays that were performed as a function of production type (A),
operation (B), farm (C), sex (D), month (E), bird age (F), and flock size (G). For example, in B, 520 assays were run for samples collected from
Operation 4. Also depicted are the approximate locations of origin of each sample (H) and each farm (I). Note that to maintain farm location
anonymity, normal random variables with mean 0 and SD 0.1 were added to the points when plotting latitude and longitudes in H and I. In all
plots, black depicts breeder facilities, red depicts broiler facilities, and blue depicts layer facilities.
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Appendix S9. For samples with virus concentrations below our limit of

detection, we performed our analyses while treating these data in two

different ways: first as a value of 0 virus copies representing virus

absence, and second as a value of our limit of detection representing

virus presence at an undetectable level. Our limit of detection was

generally better than 100 virus copies per mg of dust (Supplemental

Appendix S4), and so in practice, we used this quantity as our value in

the latter case. For this analysis, all samples that had detectable virus

below this quantity were treated identically to negative samples.

We sampled from five broiler farms at approximately weekly intervals.

One of our main goals was to quantify how virus concentrations

changed over the duration of a cohort, and across different cohorts, and

so we began by merely plotting the data. A similar plot was generated for

the air tube data. We then explored a cohort age effect by fitting

smoothing splines to the raw data from each farm where the data are

sorted by cohort age. Each spline was fit using the function

‘smooth.spline.’ We used the option ‘‘nknots¼4’’ for this function

because this number was the smallest number of knots that did not

return an error. Very similar conclusions were obtained using any

number of knots from four to nine. We explored seasonality in these

data by subtracting cohort age effects from the raw data and plotting the

residual virus concentration. We assessed the degree of correlation

between houses within farms using the ‘cor’ function. We also examined

autocorrelations within houses using the ‘acf’ function for data within
each house.

RESULTS

Cross-sectional data. Summary statistics characterizing the data

used for our model comparisons are shown in Fig. 2. Among all

samples collected (combining cross-sectional and longitudinal data),
wild-type MDV was detected at least once on 36 of the 104 farms

(Fig. 3). Virus was detected in one of three broiler-breeder

operations, four of five broiler operations, and three of five egg
layer operations. The fraction of samples in which virus was

detectable varied substantially among farms with detectable virus,

and less so between houses within a farm (Fig. 3). Summary plots of
virus prevalence as a function of production type, bird age, date of

sample collection, and bird sex can be found in Supplemental

Appendix S10. Note, however, that a visual inspection of patterns in
these data could be misleading because of potential confounding

with other covarying factors. We therefore used statistical models to

further explore the effects of these factors on the data.

Our analysis of the virus prevalence data using DIC scores revealed
that our best model was our most complicated model that included

Fig. 3. Fraction of tests with detectable virus. Each point shows the mean for a different house with gray bars depicting 95% confidence intervals
on the mean (Supplemental Appendix S15). Confidence intervals vary between houses because of variable sample sizes. Different rows depict
different production types (top, breeders; middle, broilers; bottom, layers). Solid black lines separate different operations (companies). Dotted red
lines separate different farms. Note that prevalence estimates are from the raw data, not corrected to account for potential confounding effects such as
bird age, collection date, or flock.
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effects of production type, bird age, collection date, and variation

between dust samples (Table 1). By comparing our most complicated

model to the other models through DDIC, we found moderate

support for an effect of production type, reasonable support for an

effect of collection date, relatively strong support for an effect of bird

age, and overwhelming support for variation between dust samples.

Together, these results suggest that, to varying degrees, each of these

factors had detectable effects on the prevalence of MDV on farms.

We further explored the importance of these effects by examining

the fraction of variance in our data explained by each model factor

for our best model (Fig. 4). This showed that the fraction of variance
attributable to production type was highly uncertain, with the 95%
credible interval ranging from 1.5% to 38.4%.

The effect sizes of production type, bird age, and collection date
observed in the full model are shown in Fig. 5. Virus prevalence was
higher on broiler farms than on layer farms (P¼0.02), but there was
no statistically significant difference between breeder and broiler (P
¼ 0.27), or breeder and layer farms (P¼ 0.15). During the first few
weeks of a bird cohort the probability of detecting virus decreased,
and then as birds continued to age this probability began to increase.
Note that after cohorts reached about 100 days, the median effect
was close to neutral, and the confidence intervals on the effect size
were fairly large (Fig. 5, middle). This uncertainty was likely because
we have relatively few data from older cohorts (Fig. 2F). We also saw
a seasonal pattern in MDV prevalence, with a fairly wide credible
interval. Our probability of detecting virus was lowest in the winter
and highest in the summer (Fig. 5, bottom).

In addition, we found that the estimated effect that ‘‘Farm’’ had
on virus detection tended to be positively correlated for nearby
farms, and this correlation decayed with distance between farms (v2

¼ 28.5, df ¼ 1, P , 0.001). However, the effect size was relatively
small, with a maximum estimated correlation of 0.029 6 0.004 that
decayed by 0.014 6 0.003 with every log10 increase in distance.
Moreover, this correlation with distance might have been a statistical

Table 1. DIC table for models considered. Mean deviance is the
average deviance of the posterior. DDIC is defined as the difference in
DIC between the model with the smallest DIC and the focal model.
Note that the Full model is the best model according to DIC.

Model name
Mean

deviance
No. of

parameters DIC DDIC

Full 336.9 17 494.5 0
No production type 339.7 15 497.1 2.5
No bird age 345.8 15 503.7 9.1
No collection date 341.2 10 499.1 4.6
No sample 450.1 16 575.3 80.7

Fig. 4. Fraction of variance on the latent scale attributable to each model factor. Points are median values and lines are 95% credible intervals.
Marginal and conditional R2 values represent the variance explainable by all fixed effects and by all fixed plus random effects, respectively. Note that
only the values for the best model (Table 1) are shown.
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artifact resulting from geographic clustering of farms belonging to

the same operation: no significant correlations by distance were

detected between farms within single operations.
Longitudinal data. The longitudinal data from five broiler farms

revealed several patterns. These data visually confirmed the

conclusion from the cross-sectional data that virus densities varied

substantially between farms, and between flocks, but varied less

between houses located on the same farm (Figs. 6, 7). This similarity

between houses was also seen as a correlation of virus concentrations

between houses within farms (average correlations between houses

within each of the five farms were 0.215, 0.320, 0.738, 0.763, and

0.918). The data also confirmed the observation that virus densities

tended to decrease during the early phase of a cohort and tended to

increase during the later phase of a cohort (Supplemental Appendix

S11). This created U-shaped curves in virus concentration within

cohorts (Figs. 6, 7). This pattern is not explained by differences in

sample humidity or qPCR inhibition (Supplemental Appendix

S12). Consistent with the cross-sectional data in which seasonal

effects were small, we were unable to find any consistent seasonal

effect on MDV dynamics in these data.

Three additional patterns were also detectable in the longitudinal

data. First, virus concentrations often dropped to below detectable

levels and returned to detectable levels at a later time point (Figs. 6,

7). Second, there was an autocorrelation in virus concentration

within single houses over time. This effect was seen as an

autocorrelation between samples collected 7 days apart—Acf(7)avg

¼ 0.579, Acf(7)min ¼ 0.226, Acf(7)max ¼ 0.967—although this

correlation was also observed over longer periods (Supplemental

Appendix S13). Third, during farm downtime, when birds were

absent from houses, there were many cases where virus concentration

did not change (Figs. 6, 7). Patterns consistent with the first two of

these observations were also seen in the air tube and feather tip data

(Fig. 8).

DISCUSSION

We surveyed commercial chicken farms in Pennsylvania to

generate the first industry-wide data set exploring the prevalence of

this virus in modern commercial settings. We found that the virus

was detectable on only one third of farms; that bird age, collection

date, and production type affected the probability that we detected

virus; and that the majority of variation in the data was not

attributable to those factors, but instead was attributable to

differences between the companies, farms, houses, flocks and

samples. Longitudinal sampling on five focal broiler farms revealed

substantial autocorrelation in virus density within houses over time

Fig. 5. Effect sizes for fixed effects. (Top) Median and 95% credible interval for the three production types. (Middle) Median and 95% credible
interval for the effect of bird age on the probability of detecting virus in a dust sample. (Bottom) Median and 95% credible interval for the effect of
collection date on the probability of detecting virus.
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and demonstrated that virus concentrations often dropped to

undetectable levels on farms, but reappeared in future flocks.

Together, these results show that the virus can be found throughout

the heterogeneous of the poultry and egg industry.

Despite the differences in rearing practices between the United

States, Australia, and Iraq, the overall prevalence of MDV detection

in dust samples was broadly in agreement with studies performed in

these other countries (17,37,43,44), showing virus on only a subset

of farms. Like Walkden-Brown et al. (44), we found that MDV

concentration in dust increased in broiler flocks as birds aged. Two

Australian studies examined the link between HVT and MDV

concentration in dust. One study found no correlation (17) and the

other study showed a negative correlation (44). Our results agreed

with the former study. All flocks in our study, however, were

vaccinated, limiting the variation in vaccination status of our study

relative to the studies performed in Australia where vaccination is

not universal. One striking difference between our conclusion and

that of Groves et al. (17) was our finding that operations have vastly

different levels of MDV prevalence. Groves et al. (17) found no

effect of operation. It may be that the importance of operation is

specific to poultry farming in the United States.

Previous studies on the evolution of MDV in the poultry industry

have focused entirely on endemic virus persistence in broiler chicken

houses (1,39,41). Our data, however, reveal that the virus can be

found in each of the sectors of chicken farming, including broiler,

layer, and breeder chicken facilities. The assumption of these models

that virus evolution can be understood using the host genetics,

rearing duration, host densities, vaccination strategies, and bio-

security measures used in the rearing of broiler chickens alone

therefore might be misleading. Given the potential for vastly

different evolutionary outcomes under different ecologic assump-

tions, further investigation is needed to determine where evolution is

likely strongest.

Conventional wisdom is that MDV is sufficiently pervasive that it

should be considered ubiquitous (14,30,33). This idea came from

observations that the virus is highly stable in the environment (24),

that problems with MD can occur quickly and without warning

when there are issues with vaccine administration, and that

vaccination does not preclude infection with and transmission of

the virus (22,35,38). It was further supported by the historical

ubiquity of antibody detection in production flocks (5,11,20,47).

However, we found virus on only one third of farms. It may, in fact,

be present on the other two thirds of farms at densities below our

detection threshold or at times when samples were not collected, or

it may instead be that modern farm practices have led to changes in

the distribution of the virus such that it is no longer ubiquitous on

chicken farms. Many features of poultry farming have changed in

recent decades that could have altered MDV ecology, such as

vaccination strategies and cohort durations (26,41). Recent studies

in Australia (37,44) and Ethiopia (4) have suggested that MDV may

no longer be ubiquitous in these locations. Our study suggests that

this trend may be more general, extending to commercial poultry

Fig. 6. Longitudinal surveillance data for three broiler farms in Pennsylvania. Each panel is labeled ‘‘X-Y,’’ where X gives a unique farm
identification and Y gives a house number on that farm such that each two character label is unique. Each of the three farms shown in this figure had
two houses. All of these farms began associated with the same operation, but Farm C changed operations in the middle of our surveillance. The
timing of this change is denoted by an asterisk in the plot. All farms followed an all-in, all-out policy, meaning that houses had discrete periods of
rearing and down time. To represent the presence or absence of birds, white intervals cover periods when birds were present, gray intervals cover
periods when birds were absent, and blue intervals cover unknown periods. Each point represents the log-mean virus concentration for that set of
dust samples. Error bars are 95% confidence intervals calculated as explained in Supplemental Appendix S15. The dotted horizontal line shows the
approximate qPCR limit of detection for a single test.
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farming the United States. Introducing nonvaccinated sentinel birds

could be a way to directly challenge this finding. If confirmed, this

suggests that selective forces acting during sporadic outbreaks or

acting in flocks with low prevalence of infection may play an

important role in the evolution of the virus.

The importance of random effects (i.e., operation, farm, house,

flock, and sample) in explaining the data suggests that substantial

variation in virus dynamics are explained by factors that covary

with these random effects. For example, bird breeds, vaccination

details, and average cohort durations may explain some of the

variation between operations. Ventilation rates, clean-out efficien-

cy, and other hygiene factors may explain some of the variation

between farms. Structural differences and wind patterns may

explain some of the variation between houses. Microbial

communities, developmental plasticity, and stochastic effects of

virus transmission may explain some of the variation between

flocks. Last, spatial clustering of virus may explain some of the

variation between samples. Our model analysis showed that

between about one quarter and three quarters of the variation in

MDV detection probability was attributable to the combined effect

of production type and operation. However, we are unable to parse

these effects into more specific factors such as hygiene, barn design,

ventilation, temperature, or vaccine manufacturers. This is because

these factors strongly covary with production type and operation.

For example, all layer and broiler-breeder farms used Rispens

vaccination, and almost all broiler farms used bivalent vaccination.

Nevertheless, our results suggest that factors outside the control of

individual farm operators may play a large role in MDV dynamics.

It also suggests that any intervention strategy intended to control

virus is likely to be ineffective unless implemented through changes

in operation practices or policies.

The large degree of uncertainty in the effect sizes of production

type and operation likely resulted from correlations in these

estimates (Supplemental Appendix S14), and this correlation may

explain why support for an effect of production type was only

moderate. Indeed, exploring the variance explained by these two

factors combined, we found that they accounted for between 26.7%

and 74.4% of the variance. This parameter estimation difficulty

likely occurred because these factors covary in our study area.

The observation that seasonality explained only a small portion of

variance in MDV prevalence contrasts with observations that MD

associated condemnation in broiler chickens has had clear seasonal

patterns in the past (44,45). However, seasonal patterns in

condemnation have become less pronounced in recent years (26).

The data we report here are consistent with the theory that this

decrease in seasonality is attributable to an overall decline in

Fig. 7. Longitudinal surveillance data for two additional broiler farms in Pennsylvania. Symbols, colors, and layout are as described in Fig. 6.
Both of these farms had four houses. Farm D was associated with the same operation as the farms in Fig. 6, but Farm E was not. Note also that Farm
E changed operations during our surveillance period, the timing of which is marked with an asterisk.
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prevalence, resulting in stochastic outbreaks playing a relatively
larger role in dynamics than seasonal forcing (26).

The U-shaped pattern in virus dynamics within a flock, seen both
in the longitudinal and cross-sectional data, suggests that MDV
density in dust changes predictably over time. The initial decrease
might be explained either by a dilution of virus in dust early in
cohorts when birds shed virus-free dust into dust that remained from
the previous cohort, or by degradation of virus DNA early in flocks.
The subsequent increase could then be explained by the
hyperconcentration of virus in dust as cohorts aged, when birds
were shedding dust that was highly contaminated with virus.

In this study, the majority of data were collected from dust
samples scraped from surfaces. An alternative method would have
been the use of settle plates that collect dust as it settles out of the air.
Both methods introduce biases, but we opted for the former method
to avoid spatial artifacts that might have arisen from patterns of dust
flow. Our measurements of virus concentration showed little
evidence of spatial heterogeneity (Supplemental Appendix S2).
Perhaps the largest drawback of our method was that each sample of
dust potentially contained material that might predate the current
flock of birds in the house. The dust kinetics might therefore be
dampened relative to their true kinetics in the air. However, the
strong agreement in viral kinetics between these data, and both the
air tube and feather tip data suggest that this may be more of a
theoretical rather than practical concern.

An interesting question is whether virus populations are
persisting within individual houses and farms, or instead going

through repeated extinction and recolonization events. Our

observation in the longitudinal data that there was a strong

autocorrelation in virus concentration within houses over time

(Supplemental Appendix S13) contrasted with the observation that

virus densities were often undetectably low in one cohort but

emerged as detectable in the next (Figs. 6, 7). This reemergence

might be due either to recolonization events or to the

epidemiologic amplification of virus persisting within the house

at undetectable concentrations. Recently developed genetic se-

quencing techniques (32) could be used to determine the relative

contributions of these two factors.
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Fig. 8. Air tube data (left column) and feather tip data (right column) for two broiler farms in Pennsylvania. Symbols, colors, and layout are as
described in Fig. 6. Note that the dynamics in the air tube data and feather tip data are highly similar to one another and are highly similar to that of
the corresponding houses in the cross-sectional data (Fig. 6). As in Fig. 6, a change in operation on Farm C is denoted by an asterisk.
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