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A B S T R A C T

Marek's disease virus (MDV) is a pathogen of chickens whose control has twice been undermined by pathogen
evolution. Disease ecology is believed to be the main driver of this evolution, yet mathematical models of MDV
disease ecology have never been confronted with data to test their reliability. Here, we develop a suite of MDV
models that differ in the ecological mechanisms they include. We fit these models with maximum likelihood
using iterated filtering in ‘pomp’ to data on MDV concentration in dust collected from two commercial broiler
farms. We find that virus dynamics are influenced by between-flock variation in host susceptibility to virus,
shedding rate from infectious birds, and cleanout efficiency. We also find evidence that virus is reintroduced to
farms approximately once per month, but we do not find evidence that virus sanitization rates vary between
flocks. Of the models that survive model selection, we find agreement between parameter estimates and previous
experimental data, as well as agreement between field data and the predictions of these models. Using the set of
surviving models, we explore how changes to farming practices are predicted to influence MDV-associated
condemnation risk (production losses at slaughter). By quantitatively capturing the mechanisms of disease
ecology, we have laid the groundwork to explore the future trajectory of virus evolution.

1. Introduction

Marek's disease virus (MDV), the causative agent of Marek's disease
(MD), imposes a substantial economic burden on chicken meat and egg
production, costing the worldwide poultry industry in excess of 1 bil-
lion USD per year (Morrow and Fehler, 2004). Historical control mea-
sures have at least twice been undermined by virus evolution, leading
to speculation that future evolution could undermine current control
(Nair, 2005). The ecology of the disease appears to be the driving force
behind past evolution, with explanations invoking vaccination (Witter,
1997; Atkins et al., 2013a; Read et al., 2015), rearing period duration
(Atkins et al., 2013a; Rozins and Day, 2017), and virus persistence
during downtime between bird flocks (Rozins and Day, 2017). Under-
standing the ecology of the virus is thus a key component in predicting
whether and when control efforts will lose efficacy. Such an under-
standing is also crucial in developing immediate responses should the
efficacy of current control measures wane. Yet the ecology of MDV is
poorly understood. This is perhaps most clearly exemplified by the
conventional wisdom that the virus is ubiquitously found on in-
dustrialized poultry farms (Office International des-Epizooties, 2010;
Dunn, 2013), despite recent surveillance data suggesting that the virus

may not be present on a large fraction of farms (Groves et al., 2008;
Wajid et al., 2013; Walkden-Brown et al., 2013; Bettridge et al., 2014;
Kennedy et al., 2015b, 2017; Ralapanawe et al., 2015).

Mathematical models of disease ecology can provide valuable in-
sight into infectious disease dynamics. Such models quantitatively re-
late changes in ecology to changes in disease dynamics, which is par-
ticularly useful when experimental manipulation is unethical or, as
with commercial-scale chicken rearing, financially costly. Models pro-
vide cheap and safe opportunities to explore the impact of system
manipulation on pathogen control, and this approach has been applied
to MDV (Atkins et al., 2013a,b; Rozins and Day, 2016, 2017). The re-
liability of a model, however, can only be assessed by challenging it
with data, and this has never been done for MDV. Here we develop a
suite of models to describe MDV dynamics on commercial broiler farms,
and we use model selection methods to identify the ecological me-
chanisms that are most important to explaining MDV dynamics in the
field.

Poultry intended for consumption are inspected and condemned for
a condition called “leukosis” at the time of processing. This condition
can be caused by various diseases, but in chickens reared for meat,
leukosis is almost exclusively caused by MD (Sharma, 1985). Current
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rates of condemnation due to leukosis are extremely low (Kennedy
et al., 2015b), but future reductions in MD vaccine efficacy due to virus
evolution might cause leukosis rates to increase, as was documented
with the erosion of vaccine efficacy in the past (Witter, 1996). A
method to relate changes in farming practices to changes in risk of
condemnation would therefore be a useful tool should virus evolution
continue along the trajectory of the past.

The concentration of MDV in dust can vary several orders of mag-
nitude between farms and within farms over time (Walkden-Brown
et al., 2013; Kennedy et al., 2017). The underlying cause of this var-
iation is unknown. Explanations may include between-flock variability
in virus susceptibility and in virus shedding that may arise from factors
such as differences in bird breed, quality of chicks, efficacy of MD
vaccines, and the presence of other pathogens. Explanations may also
involve differences in husbandry and biosecurity, such as differences in
the efficiency of virus removal, in the sanitization efficacy in houses,
and in reintroductions of virus. By comparing mathematical models
that include or exclude these potential sources of variation, we can
identify the importance of these differences on MDV dynamics, and in
turn, we can develop strategies to control the ecology, evolution, and
economic burden of this pathogen.

2. Methods

2.1. Model construction

We model the transmission and persistence of MDV within and
between flocks of broiler chickens on commercial poultry farms. Our
models are constructed assuming standard rearing practices in
Pennsylvania, United States. These practices are fairly standard for
commercial poultry rearing across much of the developed world.

Industrial-scale rearing of broiler chickens on farms tend to follow
an “all-in, all-out policy,” meaning that all chickens within a house are
reared as a single-aged cohort of birds. We refer to a cohort of birds that
occupy a single house on a farm as a flock. Birds are placed on litter that
consists of wood chips and sawdust at one-day-old, and the birds are
reared in this environment until they are ready for processing. Birds in
houses are provided ad libitum food and water. Temperature, humidity,
and air quality are maintained by a combination of active ventilation
through fans or wind tunnels and heating. Flocks are collected for
processing when sufficient time has elapsed for birds to reach a parti-
cular target weight.

While chickens are being reared, houses accumulate “chicken dust,”
a by-product of farming that consists of bits of food, epithelial cells,
dander, bacteria, and feces (Collins and Algers, 1986; Pandey et al.,
2016). The amount of dust produced by birds increases as birds grow
(Islam and Walkden-Brown, 2007; Atkins et al., 2013a). Infectious MDV
can be contained in this dust (Carrozza et al., 1973), being shed with
the epithelial cells of infectious chickens and transmitted through the
inhalation of virus-contaminated dust (Colwell and Schmittle, 1968).
The concentration of MDV in dust can be measured through quantita-
tive polymerase chain reaction (qPCR) (Baigent et al., 2005, 2016;
Islam et al., 2006). Our model is constructed with this type of data in
mind. We thus track the infection status of birds as well as total dust
and total virus quantities.

Coming from extremely hygienic hatcheries, chickens are un-
exposed to MDV when first placed in a house. Shedding of virus from a
bird can begin as early as one week post exposure to virus and tends to
reach maximal levels two to three weeks post exposure (Islam and
Walkden-Brown, 2007; Read et al., 2015). Once reached, virus shed-
ding stabilizes at peak levels for the duration of a broiler chicken's life
(Islam and Walkden-Brown, 2007; Read et al., 2015). Shed virus can
infect other chickens, causing the pathogen to spread to other hosts in
the flock. Even if virus were absent on a farm, it is possible that it may
be introduced from outside sources, for example through dispersal in
the air from nearby farms, on feed trucks, by service technicians, or by

other farm visitors.
Typical commercial broiler farms vaccinate against MD by using

bivalent vaccination (Morrow and Fehler, 2004). Although vaccinated
birds can still be infected with MDV and can still shed MDV (Witter
et al., 1971; Islam et al., 2008; Ralapanawe et al., 2016), vaccination
greatly reduces clinical signs of disease (Witter et al., 1971). This, along
with other measures to ensure bird health, means that total mortality
from hatch to processing is typically minimal (≈3% and ≈8% in the
two farms used for model inference below – in line with the national
average of 4.8%, National Chicken Council, 2016). We therefore as-
sume that bird mortality is negligible in our model. A schematic re-
presentation of the infection dynamics are shown in Fig. 1, corre-
sponding to the following set of mathematical equations:
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Fig. 1. Schematic of the model. States and parameters are as described in the main text
and Table 1. Solid lines indicate transitions between model classes. Dashed lines indicate
that producing dust and virus does not cause birds to leave their current model class.
Dotted lines indicate the between flock persistence of dust and virus. Note that without
altering the model, we depict the exposed class as a single group, where the time until an
exposed host becomes infectious is gamma distributed with shape equal to 5 and rate
equal to β.
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In the above equations, S(t) is the number of birds susceptible to
virus infection at time t. En(t) is the number of exposed birds in class n at
time t where there are 5 total exposed classes (see below), I(t) is the
number of infectious birds at time t, D(t) is the total milligrams of dust
in the house at time t, and V(t) is the total number of virus copies in the
house at time t. αc is the log normally distributed transmission rate of
the virus in flock c determined by mean μα and adjusted scale parameter
σα, β is the transition rate between exposed classes, γ is the rate at which
dust and virus are removed from the house through ventilation, and δ is
the rate at which virus decays in a house. All birds in the house produce
dust at a rate of d(τ), which is a function of flock age τ. Keeping in mind
that bird mortality is assumed negligible, the total number of birds in
the house at any time is equivalent to the initial number placed S0.
Infectious birds from flock c also produce virus at a concentration of ac
per mg of dust produced, which is log normally distributed with mean
μa and adjusted scale parameter σa. Additionally, to allow for the pos-
sible reintroduction of virus on farms, a quantity of Mμ infectious virus
copies are introduced at rate Mr.

We model the exposed class as a series of compartments to create an
incubation period of the virus that follows a gamma distribution
(Wearing et al., 2005). In practice, we used N=5 incubation classes
with a transition rate β chosen to produce virus shed rates over time
that were consistent with average viral copy number in feather tips of
experimentally infected birds (Read et al., 2015), which is strongly
correlated with viral shedding intensity (Baigent et al., 2013).

The above model describes disease dynamics within a flock of
chickens, but a complete model of MDV dynamics must also incorporate
the persistence of dust and virus between flocks. We follow the practice
of nesting within-flock disease dynamics into a discrete–time model to
capture the multiple timescales of dynamics (Dwyer et al., 2000; Elderd
et al., 2008).

MDV is highly stable in the environment, and ventilation fans are
typically off between flocks of chickens. As a consequence, the duration
of downtime between flocks of birds is unlikely to strongly influence
virus dynamics. Rather, the reduction in virus and dust between flocks
is likely the result of cleaning. This cleaning process can be highly
variable between flocks and between different farms. On some farms,
bedding material, or “litter”, is reused for several flocks, up to a year or
even more. Between flocks on these farms, only caked or wet areas of
litter are removed and top dressed with new litter. On other farms, litter
is completely changed between each flock. Full removal of litter in-
volves removing all bedding material down to the clay floor or cement
floor. Also between flocks, farmers may or may not use forced air

blowers to blow down chicken dust from fans, walls, and other above
ground surfaces. Blow downs are sometimes followed by a “thermal
fog”, comprised of a vaporized disinfectant and an insecticide. Typically
once per year, farmers will do a “wet clean and disinfect”, which is a
wash down by spraying all surfaces with high pressure, low volume
water. These wet cleans are typically followed by spraying with disin-
fectant. The outcome of the cleanout process is that dust and virus
might be removed concurrently through mechanical processes, or virus
may degrade without the removal of dust due to the action of disin-
fectants. We thus model the initial virus and dust concentration in
flocks using the following model:

= − −ψ C D l(1 ) ( ),c c c 1 (12)

= − − −ω f C V l(1 )(1 ) ( ),c c c c 1 (13)

where
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Here, ψc and ωc are the respective total dust and total virus at the start
time of flock c. lc−1 is the load out time of flock c− 1, making D(lc−1)
and V(lc−1) the respective dust and virus at the end of the previous
flock. Cc is the fraction of dust and virus removed between flocks c− 1
and c by the physical removal of dust, and fc is the fraction of persisting
virus that is removed between flocks c− 1 and c due to chemical dis-
infectants and other environmental decay factors. Note that Cc and fc
are beta distributed random numbers parameterized by their means (μC,
μf) and sample sizes (νC,νf). The initial number of birds susceptible to
virus infection at the start of flock c is equal to the total number of birds
placed in the house, and the initial number of exposed and infectious
birds are equal to 0. A list of all model parameters is provided in
Table 1.

To account for the fact that bird population sizes are finite, and for
computational convenience, the above differential equations were ef-
fectively replaced with their corresponding probabilistic transition
equations (Kennedy et al., 2014, 2015a), where time was discretized to
units of one day. Bird numbers were discretized to integer values, and
transitions between classes were determined by binomial probabilities.
For example, the number of birds that became exposed in a time step Δt
was distributed Binomial(S(t), 1− e−αcV(t)Δt). Virus and dust con-
tinued to be treated as continuous variables. For example, the amount
of virus that was removed through ventilation in a time step Δt was
equal to γV(t)Δt.

The above model allows for variation between flocks of chickens in
virus transmission rate, virus shed rate from infectious birds, dust and

Table 1
Parameter names, descriptions, and values.

Symbol Description Value (simulation) Fitted Source

μα Transmission rate, mean 1.652× 10−13 per virus copy per day No Atkins et al. (2011, 2013b)
σα Transmission rate, scale 0.3 Yes
μa Virus shed rate, mean 3×106 virus copies per mg dust Yes
σa Virus shed rate, scale 0.3 Yes
β Transition rate of exposed 0.4 per day No Read et al. (2015)
d(τ) Dust shed rate at age τ + −e10.8 368 τ326/ 1.64 mg dust per bird per day No Atkins et al. (2013a)

γ Ventilation rate 0.2 per day Yes
δ Within-flock virus decay rate 0.1 per day Yes
μC Between-flock cleanout, mean 0.8 Yes
νC Between-flock cleanout, sample size 1.0 Yes
μf Between-flock virus decay, mean 0.8 Yes
νf Between-flock virus decay, sample size 1.0 Yes
Mr Virus reintroduction, rate parameter 0.03 per day Yes
Mμ Virus reintroduction, virus copies 1×108 virus copies Yes
S0 Susceptible birds placed 27,000 birds No Kennedy et al. (2017)
V0 Initial virus population size 3×1010 virus copies Yes
D0 Initial dust present 1×107 mg dust No None
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virus cleanout efficiency during downtime, virus decay rate during
downtime, and virus reintroduction. These mechanisms for generating
variation can however be removed from the model. Variation in virus
transmission rate or in virus shed rate can be removed by respectively
assuming that σα=0 or σa=0. Variation in the cleanout efficiency of
dust and virus or in the decay rate of virus during downtime can be
respectively removed by assuming that νC or νf are extremely large.
Virus reintroduction can be removed by assuming that Mr=0. Note
that this additionally removes the parameterMμ from the model. To test
for the importance of between-flock variation in transmission rate, virus
shed rate, dust and virus cleanout efficiency, and virus degradation, and
for the importance of virus reintroduction, we therefore generated
every version of the model that includes or excludes each of these
factors (32 models in total), and we compare the fit of each of these
models to data. Our null model is the model that lacks all of these
factors.

2.2. Parameter estimation, model evaluation, and model comparison

To visualize the basic dynamics imposed by the model, we gener-
ated simulations of the most complex model using an illustrative
parameter set (Table 1), and we examined these simulations to identify
common features in the model realizations. We then used model in-
ference to estimate parameters and determine how well the above
model formulations describe data of MDV dynamics on commercial
poultry farms. Several of our model parameters are already known from
previous experiments. These include the rate of dust production as a
function of bird age d(τ) (Atkins et al., 2013a), the incubation period of
the virus (Islam and Walkden-Brown, 2007; Read et al., 2015), which is
determined by β, and the mean transmission rate of the virus μα (Atkins
et al., 2011, 2013b). Placement dates, load out dates, and flock sizes
were fixed at known values from the respective datasets being modeled.
Point estimates of the remaining parameters were determined from the
data, as described below.

The data used in this study are qPCR data reflecting the virus copy
number (VCN) per mg of dust. These data were originally collected as
part of a surveillance study quantifying the spatial and temporal var-
iation of MDV across farms in Pennsylvania (Kennedy et al., 2017). We
use two representative datasets from that study: the data from Farm A
House 1, and the data from Farm E House 4 (Fig. 2). These datasets
were chosen because they were among the most exhaustively sampled
farms and houses, and because they include highly disparate patterns of
MDV dynamics. We therefore fit these datasets separately. The Farm A
House 1 dataset consists of 476 samples, collected at 163 time points.
These data span 11 flocks with an average rearing duration of 84.3 days
and an average of 27373 birds placed in each flock. Virus quantities on
Farm A, although dynamic, remained at detectable levels throughout

the study. The Farm E House 4 dataset consists of 454 samples, col-
lected at 158 time points. These data span 21 flocks with an average
rearing duration of 46.8 days and an average of 26855 birds placed in
each flock. Virus quantities on Farm E went through periods of high
virus concentration and periods when virus was undetectable.

To construct a likelihood function, we first determined the marginal
likelihood of virus being detectable by qPCR as a function of mean virus
concentration. We treated 100 virus copies per mg of dust as the limit of
detection by qPCR, because below this concentration, virus detection is
unreliable (Kennedy et al., 2017). Using the longitudinal data from
Kennedy et al. (2017), we found that the probability of detection in
biological replicates can be well described by a probit regression of the
mean log10 VCN/mg of dust plus 1. Using a generalized linear model
with binomial data and a probit link we found an intercept of −2.206
and a slope of 1.555 (Fig. 3). For data that did not exceed our limit of
detection, the likelihood was one minus the value resulting from this
regression assuming the mean given by the model. For data that did
exceed the limit of detection, the likelihood was the probability of
detection multiplied by the probability of observing the particular virus
concentration seen in the data (data were log10 plus 1 transformed),
where the standard deviation was determined by a linear regression of
the standard deviation with respect to the mean. We thus modeled this
component of likelihood as a normal distribution with mean μ given by
the model and standard deviation 1.127− 0.151μ (Fig. 3).

Parameter estimation was performed using maximum likelihood
approximated by iterated filtering. This was implemented using the
‘mif2’ function of the ‘pomp’ package in the R statistical computing
language (King et al., 2016, 2017; R Core Team, 2017). Fitting argu-
ments used in ‘mif2’ included ‘Np=1000’, ‘Nmif= 1500’, ‘cool-
ing.fraction.50= 0.5’, and ‘rw.sd=0.02’ for all regular parameters or
‘rw.sd= 0.2’ for initial value parameters. Arguments ‘Np’, ‘Nmif’, and
‘cooling.fraction.50’ were modified for any model that repeatedly had
trouble finding high likelihood parameter space. This was performed
until at least 20 parameter sets were generated that had log likelihoods
within 50 points of the current observed maximum likelihood, to ensure
the our fitting routine had multiple opportunities to explore reasonable
parameter space. The likelihood of each final parameter set was de-
termined using particle filtering. In practice this was implemented by
averaging the likelihood scores from 10 iterations of ‘pfilter’ with
‘Np=10,000’. All code and data are publicly available (https://github.
com/dkenned1/KennedyDunnRead).

Models were compared using Akaike's Information Criterion (AIC)
(Burnham and Anderson, 2002). To aid in comparison, we present ΔAIC
and model weights (Burnham and Anderson, 2002). We further ex-
plored the ability of the models to explain the data by simulating 5000
realizations from the weighted set of reasonable models, defined as any
model with weight greater than 0.01. Each model was simulated using

Fig. 2. Data from Kennedy et al. (2017). The top
panel shows the data for Farm A House 1, and the
bottom panel shows the data for Farm E House 4.
Red intervals show periods of down time, when birds
were absent from houses. White intervals show per-
iods when birds were present. Blue intervals show
periods when surveillance data were not available.
Points are the log mean plus one virus copy number
per mg of dust collected at each sample time. Under
the assumption that noise in the data is homo-
scedastic and normally distributed, bars show 95%
confidence intervals around maximum likelihood
estimates of virus copy number per mg of dust
(Kennedy et al., 2017). Note that in rare circum-
stances, the error bars do not overlap the data points
because the log mean virus concentration differs
slightly from the maximum likelihood virus con-
centration. This discrepancy is partially due to the
assumption of homoscedasticity in the data, an as-
sumption that we relax to fit our models.
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its respective maximum likelihood parameter estimates. We present
envelopes that encompass central quantiles from these simulations.

MD takes four to twelve weeks post exposure to develop, and so the
risk of leukosis condemnation is likely to positively correlate with the
fraction of birds exposed to virus at least 30 days prior to load out.
Hereafter, we refer to this fraction of birds exposed to virus 30 or more
days before loadout as the “condemnation risk”. We present envelopes
that encompass the fraction of birds exposed to MDV over time for the
maximum likelihood estimated parameters from the set of reasonable
models. We explore the impact of altering features of poultry rearing by
exploring how two fold increases or decreases in model parameters
relative to maximum likelihood estimates alter condemnation risk
(rearing duration is altered by plus or minus 5 days).

To explore whether the parameter estimates that best explain the
data from Farm A House 1 also provide a reasonable estimate for the
data from Farm E House 4, and to explore the impact of rearing dura-
tion on MDV dynamics, we repeat these methods, applying the fitted
models from Farm A House 1 to the rearing parameters (i.e. placement
dates and load out dates) from Farm E House 4. We also do the reverse
to see whether the best fit models and parameters from Farm E House 4
provide a reasonable explanation for the data from Farm A House 1.

3. Results

The structure of the above model comes from a qualitative under-
standing of MDV natural history. Relating this qualitative under-
standing to quantitative dynamics, however, at a minimum requires
simulation of the model with parameter values within their respective
plausible ranges. In Fig. 4, we show simulated realizations of the model
for conventional duration (40 days) and long duration (80 days) rearing
periods using the illustrative parameter set from Table 1. In Fig. 5 we
show the envelopes produced by simulating the model 5000 times.
These two figures demonstrate at least five features of MDV dynamics
that emerge from our mechanistic model. First, the sampled virus dy-
namics are inherently stochastic. This stochasticity can be visualized as
the jaggedness in the curves, and it becomes less pronounced as virus
concentrations increase (Fig. 4). Second, different realizations of the
model generate variable virus concentrations even when all simulations
are performed with a single set of parameters (Fig. 4). Third, virus
densities within flocks tend to form “U” or “J” shaped trajectories, with

virus concentrations starting relatively high, decreasing early on during
the rearing period and increasing back to high concentrations later
(Fig. 5). Fourth, the sharpness of the “U” shaped trajectories vary be-
tween different flocks and realizations, sometimes generating less pro-
nounced troughs than other times (Fig. 4). Fifth, the rearing duration
can strongly alter virus dynamics (Fig. 5).

By fitting our suite of models to the data from Farm A House 1, we
found that three models have ΔAIC < 2, and are thus essentially in-
distinguishable (Table 2). Each of these three best models include
variation between flocks in the transmission rate of the virus σα, in the
shedding intensity of virus from infectious birds σa, and in the cleanout
efficiency of dust and virus between bird flocks νC, suggesting that these
features of the model are important to explaining virus dynamics. The
decay of virus between flocks νf and the reintroduction rate of virus Mr

on the other hand are each excluded from at least one of the best three
models, and therefore might not need to be included in models of virus
dynamics on this farm.

We find somewhat different results when we examine the Farm E
House 4 data. While we again find that several models provide com-
parable fits to the data according to AIC (Table 3), we find that for this
dataset, every model that includes reintroduction of virus (Mμ and Mr)
has a better AIC score than every model that excludes this mechanism.
This result suggests that virus reintroduction is important to explaining
dynamics on this farm. In addition, we find that virus reintroduction
alone is unable to explain the breadth of variation present on the farm,
as noted by the fact that model M1 which includes only stochastic virus
introduction is not in our set of models with weights greater than 0.01.
Rather, we find that each of the models that provide reasonable ex-
planations for the data also include variation between flocks in either
virus transmission rate or virus shed rate from infectious birds.

In Fig. 6 we show the parameter estimates that emerged as the
maximum likelihood estimates from the set of reasonable models as
defined by having model weights greater than 0.01. Using these para-
meter estimates in simulating our model we generate envelopes that
shows the variation in the data expected given the model structure and
maximum likelihood parameter sets. These simulations incorporate
both process error (variation in virus dynamics between simulated
realizations) and observation error (variation in the data due to mea-
surement error). Note the differences in the envelopes that are gener-
ated from these different datasets (Fig. 7). On Farm A House 1, virus

Fig. 3. The empirically derived likelihood function using data from Kennedy et al. (2017). Shown on the left is the probability of virus detection across biological replicates as a function
of measured log mean virus concentration. Points are the raw data, and the line is the best fit probit regression line. Shown on the right is the observed standard deviation of biological
replicates from the same study, discarding when log mean virus concentrations were below 103. Points are again the data, and the solid line is the best fit linear regression line.
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concentrations generally remain at high levels across many different
realizations. On Farm E House 4 on the other hand, the virus con-
centrations quickly fall to low levels, but with reasonable chances for
outbreaks to reemerge in future flocks due to virus reintroduction.
These patterns are similarly reflected in the data. In Fig. 8, we show
how the fraction of birds exposed to virus changes over time for the two
farms using maximum likelihood estimates from the set of reasonable
models, revealing that substantially more birds are exposed to virus on
Farm A House 1 than on Farm E House 4.

Fig. 9 shows how changes in farming practices (i.e., changes in
parameter values of the model) are predicted to impact condemnation
risk. Note that despite large differences between the two farms in
overall condemnation risk, altering most parameters has similar effects
on both farms. The transmission rate scale σα, the mean virus shed rate
μa, the virus shed rate scale σa, the mean between-flock cleanout effi-
ciency μC, and the number of birds placed S0 have relatively large ef-
fects on condemnation risk for both farms. The ventilation rate γ, the
sample size of cleanout efficiency νC, and the mean decay rate of virus
between flocks μf have relatively large impacts on only one of the farms.
The decay rate of virus during the rearing period δ, the sample size of
virus decay between flocks νf, the rate of virus reintroduction Mr, the
quantity of virus reintroduced Mμ, and the initial virus population size
V0 have relatively little effect on the condemnation risk for either farm.

Applying our maximum likelihood parameter estimates from Farm
A House 1 to the rearing conditions of Farm E House 4, and vice versa,
allows us to visualize the relative impacts of differences in model
parameters and differences in rearing duration on virus dynamics.
Fig. 10 shows that the maximum likelihood parameter estimates in-
ferred from virus concentration data on one of these farms do not

accurately predict virus concentrations on the other farm, which can be
seen in the mismatch between the prediction envelopes and the data.
Comparisons between Figs. 7 and 10 show that if Farm A House 1 were
to shorten rearing durations to those of Farm E House 4, it would lead
to an approximate 10 fold reduction in median virus concentration. If
Farm E House 4 were to extend rearing durations to those of Farm A
House 1, it would lead to an increase of median virus concentrations
from undetectable levels to between 102 and 103 virus copies per mg of
dust.

4. Discussion

Here, we constructed mechanistic models to describe MDV dy-
namics across multiple flocks of chickens reared on a commercial
chicken farm. We used data on virus concentration to identify the
mechanisms that drive variation in virus dynamics between farms
(Tables 2 and 3), and to provide the first data-inferred estimates of the
parameters that define these mechanisms (Fig. 6). Our models were
able to capture the dynamics of two different datasets, one in which
virus intensities tended to be much higher than in the other (Figs. 2 and
7). The different dynamics in these two datasets arise from slight dif-
ferences in model structure, parameter estimates, and rearing practices.
We then showed that altering the parameters of these models influences
condemnation risk (Fig. 9), giving insight into how MDV losses might
be managed should virus evolution undermine existing vaccines.

Two previous sets of models have been developed to describe MDV
dynamics. The first set by Atkins et al. (2013a,b) uses an individual-
based approach that captures many of the biological details particular
to MDV dynamics. The second set by Rozins and Day (2016, 2017) uses
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Fig. 4. Ten simulated realizations of the model
shown in Fig. 1 using an illustrative parameter set
(Table 1). As in Fig. 2, red intervals show periods of
down time, when birds are absent from houses. Both
panels show realizations using the same model
parameters, but where rearing duration is 80 days
(top) or 40 days (bottom). Note the differences in
dynamics between these panels, as well as the dif-
ferences in dynamics across realizations and within
realizations between flocks. These differences are the
combined result of observation error, stochasticity
introduced by the probabilistic spread of virus
through a flock, and differences between flocks in
transmission rates and virus shedding rates. (For in-
terpretation of the references to color in this figure
legend, the reader is referred to the web version of
the article.)

Fig. 5. Envelope of model realizations generated
from 5000 simulations with the illustrative para-
meter set (Table 1). Figure layout is identical that of
Fig. 4. Black solid lines show the median model
prediction at each time point. Grey shaded regions
show the respective 50%, 75%, 95% and 99% central
quantiles.
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an impulsive-differential-equation based approach that allows the
models to be completely communicated through a set of equations. Our
modeling approach is a combination of these two approaches. Like the
Rozins and Day approach, our models have an underlying impulsive
differential equation structure, making it easy to describe them. Like
the models of Atkins and colleagues, our models allow for stochasticity
and biological details that are not captured by simpler models. The key
difference between the approach presented here and previous ap-
proaches, however, is that the parameters of our models have been
determined by statistical integration with field data. Our best models
are therefore those which have withstood confrontation with data, and
these models are therefore more likely to produce accurate predictions
than untested models.

Our previous surveillance on MDV dynamics has revealed that virus
concentrations in dust tend to form U-shaped trajectories (Kennedy
et al., 2017). We attributed this to dilution of virus early in the rearing
period when few birds are shedding virus-contaminated dust followed
by increasing concentration of virus later in the rearing period when
many birds are shedding virus-contaminated dust (Kennedy et al.,
2017). Here, we have shown that this qualitative shape naturally arises
from the structure of our models (Fig. 5), and that our models quanti-
tatively explain such patterns in field data (Fig. 7).

We used model comparison methods to identify the features of
poultry farming that lead to variation in MDV dynamics between flocks
and between farms. For the Farm A House 1 data, we found that all
reasonable models included flock-to-flock variation in virus transmis-
sion rates σα, virus shedding rates σa, and cleanout efficiency between
flocks νC, thus highlighting the importance of these mechanisms for
explaining dynamics on this farm (Table 2). These results suggest that
flocks of birds differ in their susceptibility to virus and in their shedding
rate should they become infectious. High susceptibility and shedding
rates might be rapidly assessed in the field by determining the virus
concentration in dust samples or feather tips (Baigent et al., 2016). Our
results also suggest that cleanout efficiency varies on this farm and that
this variation has had detectable effects on virus dynamics. For the
Farm E House 4 data, we found that all reasonable models included
flock-to-flock variation in either virus transmission rates σα or virus
shedding rates σa, and they also all included the stochastic re-
introduction of virus Mμ and Mr (Table 3). This again suggests that
flock-to-flock variation in either disease susceptibility or virus shedding
is affecting virus dynamics. Our finding that virus is stochastically re-
introduced on this farm, also suggests that eradication of virus may be
quite challenging. Even if a control program were capable of clearing
infection from a farm, there appears to be substantial risk of re-
introduction, meaning that control measures might need to be sustained
indefinitely to maintain an infection-free farm.

Although our two datasets identified different mechanisms as key to
driving MDV dynamics, this should not be surprising. Such an outcome
might arise from true differences in the mechanisms that generate
variation between farms, but it also might arise due to other differences
in the data. For example, the importance of stochastic reintroduction of
virus is likely realized on Farm E House 4, because virus concentrations
are low in that dataset. Similar levels of virus reintroduction might also
occur when virus is common such as on Farm A House 1, but because
virus is common, this mechanism would have only a negligible impact
on the dynamics of the virus. This outcome highlights that the absence
of a mechanism in a reasonable model does not mean that the me-
chanism is not acting, but only that it is not important to explaining
those particular data. Of the mechanisms tested by our approach,
variable decay of virus between flocks νf is the only mechanism that was
not necessary to explain either of the datasets studied.

Examination of the maximum likelihood parameter estimates that
arose from the sets of reasonable models reveals that there is substantial
overlap of the range of these maximum likelihood parameter estimates
across the datasets (Fig. 6). There are only three parameters where the
ranges of the maximum likelihood estimates do not clearly overlap

Table 2
AIC table for Farm A House 1 dataset.

Model Variability parameters MaxLHood Params ΔAIC Weight

M29 σα+ σa+ νC+Mr −500.3 11 0.0 0.47
M28 σα+ σa+ νC −502.7 9 0.8 0.31
M31 σα+ σa+ νC+ νf+Mr −500.1 12 1.5 0.22
M27 σα+ σa+ νf+Mr −507.2 11 13.8 0.00
M20 σα+ νC −510.3 8 13.9 0.00
M23 σα+ νC+ νf+Mr −509.4 11 18.1 0.00
M30 σα+ σa+ νC+ νf −511.2 10 19.7 0.00
M21 σα+ νC+Mr −511.8 10 21.0 0.00
M22 σα+ νC+ νf −515.4 9 26.1 0.00
M13 σa+ νC+Mr −514.8 10 27.0 0.00
M26 σα+ σa+ νf −520.7 9 36.7 0.00
M18 σα+ νf −524.0 8 41.3 0.00
M12 σa+ νC −531.8 8 56.9 0.00
M14 σa+ νC+ νf −534.9 9 65.1 0.00
M25 σα+ σa+Mr −535.4 10 68.1 0.00
M19 σα+ νf+Mr −536.2 10 69.7 0.00
M15 σa+ νC+ νf+Mr −535.4 11 70.2 0.00
M11 σa+ νf+Mr −538.0 10 73.4 0.00
M17 σα+Mr −551.1 9 97.6 0.00
M10 σa+ νf −558.1 8 109.5 0.00
M9 σa+Mr −570.0 9 135.4 0.00
M6 νC+ νf −576.0 8 145.4 0.00
M7 νC+ νf+Mr −580.0 10 157.4 0.00
M5 νC+Mr −592.6 9 180.6 0.00
M4 νC −598.1 7 187.6 0.00
M3 νf+Mr −604.4 9 204.1 0.00
M16 σα −611.8 7 214.9 0.00
M2 νf −615.3 7 221.9 0.00
M24 σα+ σa −615.8 8 225.0 0.00
M1 Mr −684.6 8 362.6 0.00
M8 σa −699.6 7 390.6 0.00
M0 None −997.1 6 983.6 0.00

Table 3
AIC table for Farm E House 4 dataset.

Model Variability parameters MaxLHood Params ΔAIC Weight

M13 σa+ νC+Mr −361.6 10 0.0 0.19
M9 σa+Mr −362.7 9 0.3 0.16
M11 σa+ νf+Mr −361.7 10 0.3 0.16
M21 σα+ νC+Mr −362.4 10 1.6 0.08
M19 σα+ νf+Mr −362.4 10 1.6 0.08
M25 σα+ σa+Mr −362.5 10 1.8 0.08
M17 σα+Mr −363.7 9 2.3 0.06
M15 σa+ νC+ νf+Mr −361.9 11 2.7 0.05
M29 σα+ σa+ νC+Mr −361.9 11 2.7 0.05
M27 σα+ σa+ νf+Mr −362.3 11 3.3 0.04
M23 σα+ νC+ νf+Mr −362.4 11 3.7 0.03
M31 σα+ σa+ νC+ νf+Mr −361.5 12 3.9 0.03
M5 νC+Mr −368.6 9 12.1 0.00
M1 Mr −370.4 8 13.7 0.00
M3 νf+Mr −369.8 9 14.5 0.00
M7 νC+ νf+Mr −369.5 10 15.9 0.00
M12 σa+ νC −376.2 8 25.2 0.00
M14 σa+ νC+ νf −376.1 9 27.0 0.00
M20 σα+ νC −377.7 8 28.2 0.00
M10 σa+ νf −377.8 8 28.5 0.00
M28 σα+ σa+ νC −376.9 9 28.7 0.00
M30 σα+ σa+ νC+ νf −375.9 10 28.7 0.00
M26 σα+ σa+ νf −377.1 9 29.0 0.00
M22 σα+ νC+ νf −378.1 9 30.9 0.00
M18 σα+ νf −381.3 8 35.4 0.00
M24 σα+ σa −385.4 8 43.7 0.00
M8 σa −386.7 7 44.1 0.00
M16 σα −388.7 7 48.2 0.00
M6 νC+ νf −415.2 8 103.2 0.00
M4 νC −417.3 7 105.4 0.00
M2 νf −453.1 7 177.0 0.00
M0 None −524.3 6 317.5 0.00
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between the two farms. These are the virus shed rate scale σa, the virus
reintroduction rate parameter Mr and the virus reintroduction quantity
parameter Mμ. We note that variation in virus shed rate σa might be
hard to distinguish from virus reintroduction on Farm E House 4,
leading to an overestimate of this parameter. Likewise, the rate and
quantity of virus reintroduction might be hard to quantify on Farm A
House 1 because these parameters are likely obscured by the high virus
concentrations on this farm. Both lines of reasoning are supported by
the observations that 4 out of 12 of the reasonable models for Farm E
House 4 do not include the parameter σa, and 1 out of the 3 reasonable
models for Farm A House 1 do not include the parameters Mr and Mμ,
implying a great deal of uncertainty regarding the point estimates of
these parameters.

The parameter estimates that arose from model fitting give further
insight into model reliability, virus management, and perhaps even
virus evolution. Regarding model reliability we can compare our
parameter estimates to those measured in previous studies. To our
knowledge, the only parameter in our model that was directly measured
through lab experiments is the mean virus shed rate μa. Two studies
have provided estimates of this value from bivalent vaccinated
chickens. Islam and Walkden-Brown (2007) found that birds shed 6.36
log10 virus copies per mg of dust. Atkins et al. (2011) tested three virus
strains of different virulence rank and found respective peak shedding
rates of 6.04, 7.06, and 7.12 log10 virus copies per mg of dust. Our
estimate (mean= 6.30, s.d.= 0.61 log10 virus copies per mg of dust) is
in close agreement with these previous studies. The decay rate of virus δ

has never been measured, but two studies have looked at the in-
fectiousness of dust after storage at room temperature. Jurajda and
Klimes (1970) found no change in virus infectivity after 44 days and
Witter et al. (1968) found that 8 of 14 infectious dust samples main-
tained infectivity after 112 days. Our median estimate of δ implies a
half life of viral persistence of 66 days (range 20–425 days), consistent
with those previous experiments, further suggesting that our model is
reasonably capturing the biology of the system.

Our estimates of virus reintroduction rate Mr on Farm E House 4
imply a median reintroduction probability of 3.2% per day (range
1.7–5.1%). This equates to approximately one virus reintroduction
event per month. Based on these estimates, a typical flock of chickens is
likely to be exposed to virus even if the virus is not present at the time
of placement. However, the timing of virus reintroduction is an im-
portant factor in determining whether virus amplification will take
place. Introductions late in the rearing cycle, for example, are unlikely
to amplify to high levels before birds are removed for processing,
highlighting the importance of good biosecurity early in the rearing
cycle. Nevertheless, the frequent reintroduction rate suggests that
maintaining the absence of virus is likely to require rearing conditions
that limit the long term amplification of virus.

Our estimates of the parameters dictating between-flock removal of
virus and dust μC and decay of virus μf suggest that the cleanout and
sanitization processes between flocks are fairly efficient, with the
median estimate for cleanout efficiency at 95%, and the median esti-
mate of virus decay at 69% (note that the median for μC includes only

Fig. 6. Maximum likelihood parameter estimates for
each of the models with AIC weights greater than
0.01. Shown in black are the models fit to the Farm A
House 1 data. Shown in red are the models fit to the
Farm E House 4 data. Each shape shows a different
model. For parameters that are missing from a par-
ticular model, no point is shown.

Fig. 7. Fit of the model to the data. Red intervals as
in Fig. 4 denote periods of farm down time when
birds were absent. Blue intervals denote periods
where surveillance was not conducted. As in Fig. 5,
grey intervals of different darkness show 50%, 75%,
95%, and 99% central quantiles for the model pre-
dictions, with a solid black line depicting the
median. Quantiles were generated from 5000 model
realizations, where the model used to generate each
realization was randomly selected based on AIC
weights. Blue points denote the log mean virus con-
centration calculated from the data (Kennedy et al.,
2017). The top panel shows the results for Farm A
House 1 and the bottom panel shows the results from
Farm E House 4. Tick marks on the x-axis denote the
beginning of each new calendar year. (For inter-
pretation of the references to color in this figure le-
gend, the reader is referred to the web version of the
article.)
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the estimates from Farm A House 1 because the estimates of this
parameter from Farm E House 4 are highly uncertain across models).
This relatively high efficiency implies that current practices are good at
reducing dust and virus between flocks. This efficiency, however, may
be a cause for concern given that Rozins and Day (2017) found efficient
cleaning between flocks can promote the evolution of increased MDV
virulence by decreasing the lifespan of the pathogen and thus de-
creasing the cost of virulence.

We found that condemnation risk is highly sensitive to the mean
cleanout efficiency μC and flock size S0 when compared against the
impact of the mean virus decay between flocks μf, the ventilation rate γ,
or the within flock virus decay rate δ. This suggests that, should vaccine
efficacy be reduced by pathogen evolution, condemnation rates might
best be managed by focusing efforts on blowing down dust, changing
litter between flocks, and reducing flock sizes, as opposed to improving
chemical treatments between flocks or increasing ventilation rates
within flocks. Reducing the frequency Mr or intensity Mμ of virus re-
introduction from other farms also appears to have little influence on
condemnation risk. Nevertheless, Mr would become a key parameter
should the goal change from reducing to eliminating MD related con-
demnation.

We also found that condemnation risk is highly sensitive to the
transmission rate scale parameter σα, and the virus shed rate scale
parameter σa. Because the scale parameters σα and σa are directly re-
lated to variability between flocks in transmission rate and virus shed
rate, our analysis demonstrates that condemnation risk is highest when
flocks have little variability between them in transmission rate and
virus shed rate. This observation highlights the value of intervening

when a farm is having problems, even if the intervention is econom-
ically unsustainable in the long term, because a reduction in the
transmission and virus shedding rates within a single flock can have
large impacts on condemnation risk in future flocks. Currently, such a
strategy is practiced through remedial actions taken in response to MD
breaks such as changing the vaccination program to include Rispens
vaccine. Cycling flocks of chickens between standard broilers and MD-
resistant broiler might have similar benefits (Hunt and Dunn, 2013).

Our results highlight the importance of rearing duration on virus
dynamics. Long rearing durations give the virus ample time to spread
through a flock, and reach high concentrations in dust (Figs. 4 and 10).
The historical decline in MDV-associated condemnation is strongly
correlated with declines in rearing durations, making it difficult to tease
apart the relative impact that rearing duration and other changes in
biosecurity and vaccine administration have had on disease control
(Kennedy et al., 2015b). Nevertheless, our model shows that rearing
duration is one of several factor that can potentially be manipulated to
control problems with disease should they reappear.

We note that the data used in this study were collected from farms
in the United States, where universal bivalent vaccination of broiler
chickens is standard. In other parts of the world, chickens are often
given either different versions of the MD vaccine, or even no vaccine
(Dunn and Gimeno, 2013). These differences would likely alter the
ecology of the virus, and in turn, our parameter estimates. For example,
vaccination is known to suppress virus shedding rates (Islam et al.,
2008; Atkins et al., 2011; Read et al.,2015). But of course, there are
numerous differences between poultry rearing in the United States and
other places in the world, suggesting that many potential factors in

Fig. 8. Fraction of birds present in a house that are
currently in the exposed or infectious class. Note that
we arbitrarily set the value to zero when birds were
absent from the house. See Fig. 7 for interpretation of
colors and lines. (For interpretation of the references
to color in this figure legend, the reader is referred to
the web version of the article.)

Fig. 9. Simulated condemnation risk for Farm A
House 1 (black) and Farm E House 4 (red) when al-
tering the model parameters (solid horizontal lines
mark condemnation risk at maximum likelihood es-
timates). “0.5x” on the x-axis denotes halving the
parameter value, and “2x” denotes doubling the
parameter value, with the exception of the mean
cleanout efficiency μC and the mean virus degrada-
tion between flocks μf. For these latter parameters
“0.5x” is the case where twice as much virus or dust
is held over between flocks, bounded to be non-ne-
gative (i.e. argmax(2μ− 1, 0)), and “2x” is where
hold over virus or dust is cut in half (i.e. μ+1/2).
Respectively, “−5” and “+5” denote decreasing or
increasing the rearing duration τmax by 5 days. Note
that the direction of the effect for each parameter is
always the same between Farm A House 1 and Farm
E House 4, but some parameters have dis-
proportionately more effect on the condemnation
risk of one farm than the other. (For interpretation of
the references to color in this figure legend, the
reader is referred to the web version of the article.)
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addition to vaccination, may lead to differences in disease dynamics.
Even in settings similar to those analyzed here, estimates of re-
introduction rates and other parameters may be useful to operation
managers, for example, by identifying farms that would benefit from
improved biosecurity such as those located in areas of high chicken
farm densities. We thus encourage application of our models to novel
datasets, and to facilitate this, all code is available online (https://
github.com/dkenned1/KennedyDunnRead).

Given the history of MDV evolution undermining vaccine efficacy,
any long term control strategy must carefully consider the ecology of
disease transmission, and its impact on pathogen evolution. Our hope is
that the data-tested models that we present here will lay the ground
work for this approach. Future work might use these models to ask how
altering rearing practices, approximated by changing model para-
meters, affects the profitability of poultry farming as well as how this
might alter competition between virus strains and in turn the evolution
of the virus.
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