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1  | INTRODUC TION

The aim of cancer therapy is to extend the patient's quality life span 
(Balis, 1998). Many drug treatment regimens are designed to achieve 
large, rapid reductions in tumor burden with a view to eliminating 
all cancer cells (Lonial & Anderson, 2014; Waks & Winer, 2019). 
Sometimes this approach is successful, and cure is achieved. But 
frequently, even when treatment initially shrinks the tumor, this 
approach fails because the tumor grows back and is no longer re-
sponsive to the original drug regimen (Gottesman, 2002; Nikolaou, 
Pavlopoulou, Georgakilas, & Kyrodimos, 2018). A long-held belief is 

that, even if the tumor recurs, maximizing the initial tumor response 
is the best approach because it will—at the very least—delay pro-
gression (Barlogie et al., 2008; Burzykowski et al., 2008; Goring 
et al., 2017; van de Velde et al., 2007). If so, regardless of the out-
come, treating to rapidly reduce tumor burdens increases the pa-
tient's quality life span (Gill & Sargent, 2006).

However, dramatically shrinking the tumor may not be the best 
way to delay progression (Das Thakur et al., 2013; Studer et al., 2014; 
Teply et al., 2018). Recent theory from evolution and ecology sug-
gests that there may be better ways to control populations of can-
cer cells (Gatenby, Silva, Gillies, & Frieden, 2009; Hansen, Woods, & 
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Abstract
Cancer treatment is often aimed at achieving rapid, large, and sustained reductions in 
tumor burden. Even when these strong responses are achieved, treatment frequently 
fails due to the emergence of drug-resistant cell lineages. Over the last decade, a 
variety of authors have suggested that treatment should instead be aimed at contain-
ing resistance rather than curing the patient. That new philosophy poses a dilemma: 
how to choose between treatment regimens that can sometimes cure the patient and 
regimens that can delay progression but not cure the patient? Here, we investigate 
that choice. We define aspects of the evolution and ecology of tumor dynamics that 
determine whether it is better to attempt cure or to manage resistance. Even when 
it is possible to manage resistance and delay progression, this may not be the best 
treatment option. We show that the best option depends on how “cure” and “delay-
ing progression” are prioritized, and how those priorities will vary among patients. 
We also discuss the difficulties of comparing in clinical trials traditional strategies 
that can sometimes successfully cure to alternative approaches where cure is not 
possible. More generally, where resistance management is possible, there are new 
challenges in communicating options to patients, setting treatment guidelines, and 
evaluating data from clinical trials.
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Read, 2017; Read, Day, & Huijben, 2011; Wale et al., 2017). When 
the emergence of drug-resistant cell lineages makes it impossible to 
control tumor burden, then slowing the expansion of the drug-re-
sistant population should delay progression. This thinking shifts the 
goal of treatment from “cure” to “resistance management.”

Here, we focus on “resistance management” strategies that use 
competition to suppress the expansion of the drug-resistant popu-
lation (Enriquez-Navas et al., 2016; Hansen et al., 2017). The idea 
behind competitive suppression is that different cell populations 
compete with each other for resources required to multiply and sur-
vive (Garber, 2015; Hsu & Sabatini, 2008). If competitive suppres-
sion is effective, then the resistant cell population will grow more 
slowly in the presence of sensitive cells, and tumor control will be 
maintained for longer. Instead of maximizing tumor shrinkage, the 
proposition is to deliberately maintain larger tumor burdens to en-
sure that there are sensitive cells to suppress the resistant popula-
tion (Gatenby et al., 2009).

A recent example of this approach is “adaptive therapy” used 
to treat metastatic castrate-resistant prostate cancer (Zhang, 
Cunningham, Brown, & Gatenby, 2017). This approach uses the same 
drug as standard therapy but applies it differently. Where standard 
therapy would continue treatment until maximal tumor response 
was achieved (and perhaps even longer), “adaptive therapy” only 
administers drug long enough to achieve a 50% reduction in tumor 
burden. At this point, further treatment is withheld until the tumor 
burden recovers to its initial (pretreatment) baseline, and then, the 
treatment cycle is repeated. This approach has shown promising re-
sults in a pilot clinical trial, with adaptive therapy greatly increasing 
time to progression over standard therapy (Zhang, Fishman, Brown, 
& Gatenby, 2019). This is an example of a resistant management 
strategy designed to use competition to delay progression. In es-
sence, the drug is used to contain the sensitive tumor cells and the 
sensitive cells are used to contain the resistant tumor cells.

Successful resistance management treatment strategies often 
involve chronic control of cancer; cure is rarely—if ever—achieved. 
Cure, if it can be achieved, is normally the more preferable outcome 
(depending on side effects), but treating to “cure” may carry some 
risk. If treating to “cure” fails, then the cancer may progress more 
rapidly than if a resistance management strategy had been used be-
cause resistant cell lineages can expand unconstrained by competi-
tion with sensitive cells. This raises a dilemma. If there is a possibility 
of resistance developing to a drug (or combination of drugs), what 
should the aim of treatment be? Large reductions in tumor burden 
with the ultimate aim of cure? Or minimal reductions in tumor bur-
den aimed at containing resistance for as long as possible?

Here we consider how to choose between “attempting cure” and 
“managing resistance.” Often, the choice requires prioritizing “cure” 
and “delaying progression.” The possibility of cure—even when re-
sistance is present—is what makes this decision so difficult and what 
distinguishes the analysis we present here from the one presented 
earlier (Hansen et al., 2017). We argue that the decision-making 
process reduces to two stages. The first stage is quantifying (a) the 
probability of cure and (b) the effect of resistance management on 

progression. The second stage is determining how “cure” and “de-
layed progression” are valued. There is no single way to do this, but 
how these outcomes are valued strongly impacts the treatment de-
cision. Not being explicit about this valuation process can have neg-
ative consequences on the design and interpretation of clinical trials.

2  | CONCEPTUAL FR AME WORK

We begin by describing the conceptual framework we will use to 
compare “attempting cure” and “managing resistance” (Figure 1). This 
framework is a deliberately simplified caricature of tumor growth and 
is intended to focus on the fundamental issues. It is similar to the con-
ceptual framework presented previously (Hansen et al., 2017) with the 
important distinction that it allows for the possibility of cure (see Box 1 
for a description of the mathematical model). We assume that a tumor 
consists of drug-sensitive and drug-resistant cells. The size of a tumor 
at the beginning of treatment is the baseline burden Bbase. If it is neces-
sary for immediate health reasons to first reduce a patient's tumor to 
an acceptable burden, then we will call this newly achieved acceptable 
burden the baseline burden. We further assume that the side effects 
of drugs are negligible and that the tumor only presents a risk to the 
patient if it progresses (i.e., grows beyond its baseline burden).

In an ideal situation, treating to cure leads to the immediate re-
moval of all drug-sensitive cells. We will call this aggressive treatment. 
If there are no resistant cells, then aggressive treatment results in 
immediate cure. If there is a small resistant population, then there 
is still some possibility that this population will die out due to ran-
dom effects and the patient will be cured. It is also possible that the 
resistant population will grow and eventually exceed the patient's 
baseline burden. At this point, we say that the cancer has progressed. 
In this case, cure was not achieved even though cure was the aim.

The second approach, treating to manage resistance, uses com-
petition to try to delay progression and contain the cancer for as 
long as possible. To maximize competition, we maintain the largest 
possible sensitive population—without allowing for progression. This 
means treating just enough to keep the tumor at its baseline burden. 
Eventually, treatment will no longer be able to contain the tumor 
because it will consist predominantly of resistant cells. At this point, 
progression occurs. We will call this method of leveraging competi-
tion to control the tumor, containment.

When aggressive treatment fails to cure the patient, the result-
ing time to progression can be compared to the time to progression 
under containment. We will compare time to progression between 
the two strategies by looking at the ratio of these times. Specifically,

Due to random effects during cell replication and death, there 
will be a distribution of possible progression times for both aggres-
sive treatment and containment. An important feature of the fold 

(1)

⎛
⎜⎜⎝

Fold Change In

ProgressionTime

⎞
⎟⎟⎠
=

ExpectedProgressionTimeWithContainment

ExpectedProgressionTimeWithAggressiveTreatment
.
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change in progression time is that it is a comparison of expected 
times to progression (i.e., the expected values of these distribu-
tions). In what follows, we use the expected progression times as a 
summary of these distributions. If another feature of these distribu-
tions is considered more important, then it could be used instead.

There are two possible outcomes. The first is that containment 
delays progression relative to aggressive treatment (fold change 
in progression time is >1). In this case, the resistance manage-
ment strategy is successful. The second possible outcome is that 
containment actually leads to early progression (fold change in 
progression time is <1). Whether containment leads to early or de-
layed progression is heavily influenced by the evolution and ecol-
ogy governing tumor dynamics and is discussed in the next section.

3  | A PRIMER ON CONTAINMENT

Containment is designed to use drug-sensitive cells to competitively 
suppress the expansion of the drug-resistant population. The prob-
lem is that competition is not the only way that sensitive cells in-
fluence the resistant population. For example, when sensitive cells 
divide, mutations can occur that confer resistance. This means that 
containment will delay progression only if the overall effect of com-
petitive suppression exceeds the overall effect of mutational input. 
If there is essentially no mutation, then containment will delay pro-
gression at least as long as aggressive treatment (how much longer 
will depend on how strong competition is). On the other hand, if 
competition is negligible and the probability of mutation is high, 
then progression will actually occur sooner with containment.

Theory suggests that the balance between competitive suppres-
sion and mutational input changes as the resistant population grows 

(Hansen et al., 2017). When the resistant population is small, contain-
ment actually accelerates the expansion of the resistant population be-
cause of mutational input from the sensitive population. Competitive 
suppression becomes the dominant effect only once the resistant pop-
ulation is large enough. The size of the resistant population where this 
switch occurs is called the balance threshold Rbalance (see Box 2 for a 
derivation of Rbalance). This means that during containment, the resis-
tant population can go through periods of time where its expansion 
is enhanced by the presence of sensitive cells and periods where its 
expansion is slowed. Whether or not containment delays progression 
depends on the net effect of these periods and is strongly influenced 
by the balance between mutation and competition. In particular, if the 
baseline burden is less than the balance threshold (Bbase < Rbalance), then 
containment will never delay progression (Hansen et al., 2017).

4  | THE CURE–PROGRESSION PL ANE

This framework naturally defines a cure–progression plane and allows 
us to partition all possible scenarios into two sets: one where aggres-
sive treatment is obviously the preferred option and one where it is 
unclear whether containment or aggressive treatment should be used 
(Figure 2a). In the first set, containment leads to early progression and 
so aggressive treatment is best because it both maintains the possibil-
ity of cure and maximally delays progression. In this case, the patient 
lies in the lower half of the cure–progression plane (fold change in 
progression time is <1). In the second set, the decision is unclear and 
we are forced between attempting cure and delaying progression.

In practice, determining a patient's position on the cure–progres-
sion plane is very difficult. Complications arise for numerous reasons 
including, but not limited to, difficulties in measuring and detecting 

F I G U R E  1   Conceptual framework. Once aggressive treatment immediately removes all drug-sensitive cells, there are two possible 
outcomes. The first is that any remaining drug-resistant population will eventually die out due to random effects. In this case, aggressive 
treatment cures the patient. The second possible outcome is that the remaining resistant population continues to grow and eventually 
exceeds the patient's baseline burden. When this occurs, the cancer has progressed. If containment is used, then the tumor is maintained 
at the patient's baseline burden for as long as possible. In this case, the resistant population will continue to grow until the tumor is 
predominantly resistant and grows to exceed the baseline. At this point, the cancer has progressed. Compared to aggressive treatment, 
containment may either lead to early or delayed progression
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tumor burden, and inadequate models of tumor growth. Here, we 
ignore these difficulties (again, so we can concentrate on the funda-
mental issues) and focus on how to make treatment decisions under 
the assumption that we perfectly understand the tumor dynamics.

Two main features of cell dynamics that determine a patient's 
position on the cure–progression plane are: (a) the balance between 
mutation and competition and (b) the intrinsic rate of cell turnover. 
Figure 3 shows how the probability of cure and the fold change in 
progression time depends on these details (see Box 3 for mathemat-
ical details and Box 4 for simulation details). We now take each of 
these features in turn.

4.1 | Placement on cure–progression plane: role of 
mutation and competition

The balance between mutation and competition predominantly im-
pacts a patient's vertical position on the cure–progression plane. 
Simply by adjusting the amount of mutation, it is possible to change 
whether or not containment delays progression (Figure 3). Each solid 
black vertical line shows how decreasing the probability of mutation 
(while keeping all other cell properties fixed) increases the vertical 
position of the patient. Changing the probability of mutation (ɛ) does 
not change the patient's horizontal position because we are assuming 
that aggressive treatment immediately removes all sensitive cells. That 
means that the mutation rate does not change the probability of cure.

The balance between mutational input and competitive sup-
pression also depends on the baseline burden. If the baseline bur-
den is small enough, then the patient will be in the lower half of the 

BOX 1 Mathematical model of tumor dynamics 
and treatment

To model tumor dynamics, we use a simple birth–death 
process (Ravindran, Phillips, & Solberg, 1987). This allows 
us to account for stochastic effects that can eventually 
lead to cure. We will assume that the tumor consists of 
two different cell populations: a drug-resistant population 
R, which is completely resistant to drug treatment, and a 
drug-sensitive population S. The rate of cell replication (i.e., 
the birth rate) will depend on whether aggressive treat-
ment or containment is being used.
Within our conceptual framework, aggressive treatment 
immediately removes all drug-sensitive cells and so the total 
tumor is instantly reduced to just the drug-resistant popula-
tion. We model the birth rate under aggressive treatment as

where r is the probability of replication in the absence of com-
petition, and δ is the competition coefficient. The amount of 
competition depends on the size of the resistant population 
and decreases the replication rate by a factor (1 − δR).
Under containment, the total tumor burden is maintained 
at the baseline burden Bbase and consists of both resist-
ant and sensitive cells. In this case, the birth rate for the 
resistant population takes a slightly more complicated 
form for two reasons. First, resistant cells will experience 
competition from sensitive cells and other resistant cells. 
Since the entire tumor population Bbase is contributing to 
competition, replication of the resistant population will be 
reduced by a factor (1 − δBbase) instead of (1 − δR). Second, 
we allow for the possibility that the sensitive cells could 
generate resistant mutants. If the sensitive replication rate 
is r(1 − δBbase)S and the probability of mutating to resist-
ance is ɛ, then the rate of mutational input from the sensi-
tive population to the resistant population is ɛr(1 − δBbase)S. 
Since the total tumor size is Bbase during containment, 
the amount of mutational input can also be rewritten as 
ɛr(1 − δBbase)(Bbase − R). Therefore, under containment the 
birth rate of the resistant population is

We assume that there is a constant probability µ of cell 
death and that this is the same for both treatment strate-
gies. In other words, the death rate is D(R) = µR, for both 
aggressive treatment and containment. These specific 
birth and death rates can be substituted into the expres-
sions in Box 3 to determine the probability of cure and the 
expected times to progression.

BA (R)= r (1−�R)R,

BC (R)= r
(
1−�Bbase

)
R+�r

(
1−�Bbase

) (
Bbase−R

)
.

BOX 2 The balance threshold

An important feature of our illustrative model is that the 
birth rate is minimized by containment whenever R is large 
and by aggressive treatment whenever R is low. Specifically,

Therefore, if we define the “balance threshold” (Hansen 
et al., 2017) by Rbalance=

�

�

(
1−�Bbase

)
 then

Another important feature of the balance threshold is 
that it is a function of the baseline burden Bbase. From the 
expression for Rbalance, it is clear that increasing the base-
line burden will decrease the balance threshold.

BC (R)= r
(
1−�Bbase

)
R+�r

(
1−�Bbase

) (
Bbase−R

)
,

= r (1−�R)R− r�
(
Bbase−R

)
R+�r

(
1−�Bbase

) (
Bbase−R

)
,

=BA (R)+
[
�r

(
1−�Bbase

)
− r�R

] (
Bbase−R

)
.

BC (R)<BA (R) if R>Rbalance , and

BC (R)>BA (R) if R<Rbalance

.
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cure–progression plane and aggressive treatment is the best option. 
In these patients, the tumor burden is never large enough to gener-
ate enough competition to make containment a useful strategy. By 
increasing the baseline burden, a patient can move from the lower 
half to the upper half of the plane (Figure 3, red circles moving from 
left to right). Each triplet of vertical lines shows how changing the 
baseline burden (while keeping all other properties fixed) changes 
the patient's position on the plane. Changing the baseline has neg-
ligible effect on the probability of cure (the dashed lines in each 
triplet have the same probability of cure as the solid line, they are 
displaced horizontally from the solid line only for clarity).

4.2 | Placement on cure–progression plane: role of 
intrinsic cell turnover

A patient's position on the plane also depends on the probability of 
cell death µ and the intrinsic replication rate r, but it only depends 
on the ratio of these quantities (i.e., �

r
). This ratio, which we call in-

trinsic cell turnover, impacts both the probability of cure and the 
fold change in progression and has been shown to be important for 
other aspects of cancer dynamics (Bozic, Gerold, & Nowak, 2016; 
Waclaw et al., 2015). As cell turnover increases, cell deaths become 
increasingly more frequent than cell births and this increases the 
probability of cure (probability that the resistant population dies out 
by chance), so that patients with higher cell turnover are further to 
the right on the plane. Note that this ratio �

r
 is also the probability of 

cure when there is a single resistant cell (R0 = 1) and no competition 
(δ = 0) (Athreya & Ney, 1972).

The effect that intrinsic cell turnover has on a patient's vertical 
position is slightly more complicated. Recall that during containment, 

the resistant population can spend periods of time when its expan-
sion is enhanced (when R < Rbalance) and periods of time when its 
expansion is slowed (when R > Rbalance) as compared to aggressive 
treatment. (See section: Primer on containment, for more details.) 
Increasing intrinsic cell turnover increases the proportion of time 
spent above the balance threshold where the effect of competition 
exceeds the effect of mutational input (see Box 5 for a more detailed 
discussion).

Therefore, if there is any chance of containment delaying progres-
sion (i.e., Bbase > Rbalance), increasing cell turnover will increase the fold 
change in progression time. This means that if containment already 
delays progression, increasing cell turnover will delay progression 
even more (patients in the upper half of the plane will move further up 
the plane). Additionally, even if containment causes early progression, 
increasing cell turnover could change this. Patients could transition 
from the lower half to the upper half of the plane (Figure 3, light blue 
circle moves upwards and to the right). See Box 5 for the case when 
containment has no chance of delaying progression (Bbase < Rbalance). 
In conclusion, if there is any chance of containment delaying pro-
gression (the baseline burden exceeds the balance threshold), then 
increasing cell turnover both increases the probability of cure and 
allows containment to successfully delay progression for longer and 
for a wider range of mutation rates. This means that as cure becomes 
more likely, the cost of failed cure increases—making the decision 
between containment and aggressive treatment even more difficult.

5  | THE DECISION BOUNDARY

Knowing when to “attempt cure” as opposed to “delay progression” 
requires partitioning the upper half of the cure–progression plane 

F I G U R E  2   The cure–progression plane. Both the probability of cure (horizontal axis) and the effect of containment on progression time 
(vertical axis, defined in Equation 1) should be considered when making treatment decisions. Panel a: Our conceptual framework divides all 
possibilities into two sets: (i) Situations where containment leads to early progression. In this case, patients are located in the lower portion 
of the cure–progression plane (red shaded area) and aggressive treatment is best. (ii) Situations where containment delays progression. In 
this case, patients are located in the upper portion of the cure–progression plane (unshaded area) and it is unclear whether containment or 
aggressive treatment should be used. Panel b: If the value of cure and delayed progression is determined by how they change a patient's 
expected life span, then the decision boundary is an increasing line (dashed black line separating blue and red shaded areas). In this case, 
containment should be used whenever it results in a longer expected life span (blue shaded area). Solid black line is where the fold change in 
time to progression (Equation 1) is one
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(Figure 2a) into areas where containment should be used and areas 
where aggressive treatment should be used. Or, in other words, to 
fully specify treatment decisions, it is necessary to define a decision 
boundary. One way to do this is to directly compare the benefits of 
cure and delayed progression by measuring how they affect the life 
span of the patient. Modifications of this metric might include some 
quantitation of the quality of life span, but for simplicity, we focus on 
life span per se.

If EC(LS) and EA(LS) denote the expected life span of a patient 
under containment and aggressive treatment, respectively, then 
containment would be chosen whenever

For example, suppose that (a) progression is closely followed 
by patient death (a modified approach could be used if second-line 
therapies were possible) and (b) cure returns a patient to their usual 
(cancer-free) expected life span. In this case, the expected life span 
under aggressive treatment is

and under containment is

Substituting Equations 3 and 4 into Equation 2, we see that ag-
gressive treatment should be used whenever

This criterion defines a linearly increasing decision boundary as 
shown in Figure 2b.

(2)E
C (LS)>E

A (LS) .

(3)

E
A (LS)

⏟⏟⏟

expected life span

underaggressive

treatment

= PR0
(cure)

⏟⏞⏞⏟⏞⏞⏟

probability

of cure

E (NLS)
⏟⏟⏟

expected

natural life span

+
(
1−PR0

(cure)
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

probability that

aggressive treatment

doesnot lead tocure

E
A

R0

(
tf

)
⏟⏟⏟

expected timeto

progressionwhen

aggressive treatment

doesnot lead tocure

(4)

E
C (LS)

⏟⏟⏟

expected life span

undercontainment

= E
C

R0

(
tf

)
⏟⏟⏟

expected timeto

progressionunder

containment

.

⎛
⎜⎜⎝

FoldChange In

Progression Time

⎞
⎟⎟⎠
=
EC
R0

�
tf

�

EA
R0

�
tf

� <

�
E (NLS)

EA
R0

�
tf

� −1

�
PR0

(cure)+1.

F I G U R E  3   Position on cure–progression plane depends on ecology and evolution of cancer cell dynamics. Increasing the probability of 
mutation decreases the patient's vertical position but does not affect their horizontal position (solid black lines). A patient's vertical position 
is also impacted by the baseline burden (each triplet of black lines shows how a patient's vertical position changes as the baseline burden 
changes from low (left dashed line) to intermediate (middle solid line) to high (right dashed line). Changing the baseline burden has negligible 
effect on the probability of cure (the lines in each triplet are separated horizontally simply for clarity). The probability of cure for each triplet 
is indicated by the middle solid line. Red circles show how increasing the baseline burden from low (left-most red circle) to high (right-most 
red circle) can move a patient from the lower half to the upper half of the plane. Light blue circles show how increasing intrinsic cell turnover 
from low (left-most blue circle) to high (right-most blue circle) increases both the probability of cure and the fold change in progression 
time. Box 3 provides the analytic expressions for the probability of cure and the times to progression for both containment and aggressive 
treatment. See Box 4 for simulation details
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The slope of this line is (E(NLS)
EA
R0
(tf )

−1) and so depends on both the 

natural life span of the patient (E(NLS)) and the expected time to 
progression when aggressive treatment fails to cure the patient 
(EA

R0

(
tf

)
). For example, all else being equal, the decision boundary for 

a cancer that is diagnosed in childhood increases much more rapidly 
than one diagnosed in an elderly patient. Thus, aggressive treatment 
should be used in a childhood disease even if the probability of cure 
is fairly low because of the great benefit received in the unlikely 
event that the child is cured. On the other hand, the probability of 
cure would have to be quite high before aggressive treatment was 
warranted in an older patient—because the gains associated with 
cure are not that much better than simply delaying progression.

This approach provides a straightforward way to compare the 
different outcomes of treatment, but the focus on expected (mean) 
life expectancy has some disadvantages. For example, if the dis-
tribution of possible outcomes is heavily skewed, the expected re-
maining life span may be an inadequate summary of this distribution. 
Importantly, it is possible for an aggressive treatment with a high 
probability of cure but rapid progression if it fails to result in the 

same expected life span as a containment strategy that consistently 
results in modest delays in progression. Although these strategies 
would be considered equivalent with this method, patients may 
value these outcomes very differently. As another example, in the 
diagnosis of childhood cancer mentioned above, patients may prefer 
the certainty of modest gains over the unlikely possibility of very 
large gains.

Here, we have described a possible method for defining a deci-
sion boundary and discussed some of its shortcomings. There are 
many ways to make this decision and no single best choice for all 
scenarios. Ultimately, the treatment decision will depend on two fac-
tors: (a) the patient's location on the cure–progression plane and (b) 
how “cure” and “delaying progression” are prioritized.

6  | COMPARING STR ATEGIES IN CLINIC AL 
TRIAL S

How “cure” and “delaying progression” are prioritized also has im-
portant implications not only for the patient, as above, but also 

BOX 3 Formulas for cure and progression time

Since aggressive treatment immediately removes all drug-sensitive cells, the total tumor is instantly reduced to just the drug-resist-
ant population. It then remains to track this drug-resistant population over time and determine: (a) how likely it is to shrink to zero 
(i.e., determine the probability of cure) and (b) how long it is expected to take for the tumor to grow to the baseline burden Bbase if it 
does not shrink to zero (i.e., determine the expected time to progression if cure is not achieved). For aggressive treatment, we will 
model the dynamics of the resistant population as a Markov chain with two absorbing boundaries (one representing cure when R = 0 
and one representing progression when R = Bbase). This allows us to derive analytic expressions for the probability of cure and also the 
expected time to progression (Ravindran et al., 1987). If R is the number of resistant cells and BA(R) and DA(R) are the birth and death 
rates after aggressive treatment, then the probability of cure when there are initially R0 resistant cells is

If, on the other hand, aggressive treatment fails to cure, then the expected time to progression is

In the case of containment, we are still interested in determining how long it takes for the resistant population to reach the base-
line burden, but we also assume that the sensitive population has the ability to directly contribute to the resistant population (e.g., 
through mutation). This means that the R = 0 boundary is no longer absorbing, and we have a birth–death process with a single ab-
sorbing boundary at R = Bbase. In this case, the expected time to progression when there are initially R0 resistant cells is

where BC(R) and DC(R) are the birth and death rates under containment.
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for the comparison of containment and aggressive treatment 
in clinical trials. In order to be approved, containment strate-
gies must show improved (or at least noninferior) outcomes to 
standard aggressive treatments and it has become increasingly 
common to use progression-free survival (PFS) to do this (Korn & 
Crowley, 2013; Seymour et al., 2010; Villaruz & Socinski, 2013). 
PFS is the time to progression or death from any cause (Green, 
Benedetti, & Crowley, 1997). Because PFS includes both progres-
sion and death, the distribution of event times in a trial can be 
quite skewed. For example, with aggressive treatment the time to 
progression for patients who are not cured can be much shorter 
than the time to death for patients who are successfully cured. 
The presence of these two sets of patients (cured vs. those who 
progress) can make comparison of PFS for containment and ag-
gressive treatment difficult. Different comparison methods prior-
itize cure and delayed progression differently.

Progression-free survival data are often summarized using the 
Kaplan–Meier curves (Rich et al., 2010). There are a number of sum-
mary statistics commonly used to compare these curves. Examples 
include median PFS, PFS at certain years (i.e., 3, 5, or 10 years), and 
statistical tests that compare the entire curve like the log-rank test. 
Sometimes, the Kaplan–Meier curves will cross and this can make it 
difficult to compare them in a meaningful way (Li, Han, Hou, Chen, 
& Chen, 2015; Logan, Klein, & Zhang, 2008). Our conceptual frame-
work suggests that crossing curves are especially likely to occur 
when comparing containment and aggressive treatments. This is 
best illustrated by examining PFS curves for containment and ag-
gressive treatment under the assumption that tumor dynamics are 
described by the model in Box 1.

Figure 4a shows PFS curves for containment for a variety of dif-
ferent mutation rates (colored curves) and for aggressive treatment 
(black curve). The red containment curves correspond to higher 
probabilities of mutation, which cause rapid progression during con-
tainment. These curves lie below the black curve, and for these high 
mutation probabilities, aggressive treatment leads to better progres-
sion-free survival. In this case, the choice is obvious, regardless of 
how cure and delayed progression are prioritized. Aggressive treat-
ment is the better option.

The blue (light and dark) containment curves correspond to 
lower mutation probabilities, and they initially all show better PFS 
than aggressive treatment. The right-most dark blue curve corre-
sponds to containment under the assumption that there is no mu-
tation. This curve never crosses the black curve and has a much 
higher median PFS than aggressive treatment (as indicated by 
where the curves cross the dashed line). It also has better PFS at 3, 
5, and 10 years (compare intersection of right-most blue curve and 
black curve with gray shaded areas). On the other hand, the left-
most dark blue curve initially begins above the aggressive treat-
ment curve but eventually crosses. However, the crossing occurs 
sufficiently late that containment is still preferred by all 4 measures 
(median PFS or PFS at 3, 5, and 10 years). The picture is not as clear 
if the mutation rate is slightly higher. For example, although the light 
blue curve has approximately the same median PFS as aggressive 
treatment, containment in this case improves PFS at 3 years but 
decreases PFS at 5 and 10 years. Different comparison methods 
lead to different conclusions. For this example, with this mutation 
rate, using PFS at 3 years to compare strategies prioritizes delaying 
progression. Comparing the curves at 5 years priorities “long-term” 
survival (or cure). But this could change for different mutation rates 
and depends a lot on how much containment delays progression. 
For example, if PFS at 20 years was used to compare treatment 
strategies, then for the mutation rate corresponding to the left-
most dark blue curve, aggressive treatment would be better.

Figure 4b shows how treatment decisions based on PFS at 3 and 
5 years depends on the probability of mutation, baseline burden, and 
intrinsic cell turnover. In some situations, containment is the pre-
ferred strategy regardless of whether PFS is assessed at 3 or 5 years 
(blue circles), in other situations, aggressive treatment is always pre-
ferred (red circles). There are also cases where the decision depends 

BOX 4 Simulation details

How different aspects of tumor cell ecology and evolution 
impact the probability of cure and the fold change in pro-
gression time are fully specified by the analytic expressions 
in Box 3. Simulations are used simply to provide a visual 
representation of these relationships, with a focus on rela-
tive effects. Simulations are not meant to describe realistic 
tumor dynamics. In particular, small tumor sizes are used 
to allow a wide exploration of parameter values within a 
reasonable time frame. To compensate for the small tumor 
size, we use larger mutation probabilities than would be 
expected. However, to ensure all possible dynamics are 
captured, we also consider the case where there is no 
possibility of mutation (ɛ = 0). The mutation rates used 
in Figure 3 are 0, 0.01, 0.1, 0.45, and 1. The competition 
coefficient δ determines how large a tumor can be before 
cell replication is no larger possible (see Box 1 for details). 
For both aggressive treatment and containment, cell rep-
lication will decrease to zero when the tumor burden 
reaches 1

�
. For each triplet in Figure 3, the baseline burdens 

are (from left to right within each triplet) 0.25
�

, 0.5
�

, and 0.6
�

. 
Each triplet represents a different intrinsic cell turnover. 
From the leftmost triplet to the rightmost triplet, intrinsic 
cell turnover is 0.01, 0.05, 0.1, 0.2, 0.25, 0.35, and 0.45. 
For all simulations, the competition coefficient was set to 
�=

1

500
. Each curve in Figure 4a is generated using 5,000 

patients, which are diagnosed at the age of 50 and whose 
life spans are described by a normal distribution with a 
mean of 76 years and a standard deviation of 2 years. Using 
a large number of patients (5,000) helps to ensure that the 
entire distribution of possible outcomes is represented. 
Data sharing is not applicable to this article as no new data 
were created or analyzed in this study.
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on how PFS is assessed (light blue circles). In these cases, contain-
ment is preferred when the earlier time is used (PFS at 3 years) and 
aggressive treatment is preferred if the later time (PFS at 5 years) is 
used.

Figure 4b emphasizes that there are distributions of possible 
progression times for each treatment approach and hence different 
ways to define the fold change in progression time. As mentioned 
previously, we have chosen to use the expected times to progres-
sion (the means of these distributions) to define the fold change in 
progression time, and this definition separates the cure–progres-
sion plane into two halves: the lower half (Figure 4b, shaded red 
area) where aggressive treatment is always best, and the upper half 
(Figure 4b unshaded area) where containment delays the expected 
time to progression. Figure 4b shows that if we had defined fold 
change in progression time using the probability that progression 
time exceeds either (a) 3 years or (b) 5 years, this would have changed 
how patients are divided between the upper and lower halves of the 
cure–progression plane.

In summary, this analysis shows that when comparing standard 
practice (aggressive treatment) with resistance management strate-
gies in clinical trials, it is important to ensure that the method used 
to compare treatment strategies is consistent with how “cure” and 
“delayed progression” are prioritized.

7  | DISCUSSION

There are many uncertainties in cancer treatment and no easy deci-
sions. Every patient's cancer represents a unique ecology that will 
likely evolve and respond to treatments in different ways. Despite 
these difficulties, the intent of treatment used to be clear (Balis, 1998; 
Barlogie et al., 2008; Frei, 1985; Lonial & Anderson, 2014). The best 
treatment was the one that maximally reduced the tumor burden. In 
the best case, this would cure the patient, and in the worst case, it 
would at least slow the progression of the cancer. Cure was the aim, 
and delayed progression was the outcome when treatment failed.

BOX 5 How intrinsic cell turnover impacts fold change in progression time

Total cell turnover and intrinsic cell turnover are different. Total cell turnover describes how likely cell death is compared to cell 
replication and depends on the treatment strategy, the size of the resistant population, and the intrinsic cell turnover �

r
. Under con-

tainment, total cell turnover is

Increasing either the intrinsic cell turnover or the resistant population will increase the total cell turnover. This means that increas-
ing intrinsic cell turnover disproportionately impacts the total cell turnover at higher R. This translates to increasing the expected 
proportion of time spent at higher R. Provided the baseline burden is large enough (Bbase > Rbalance), this increases the expected 
proportion of time spent in the area where containment slows the expansion of the resistant population (i.e., whenever R > Rbalance).
An analogous argument applies for aggressive treatment. Total cell turnover for aggressive treatment is

This means that whenever there is a chance of containment delaying progression (Bbase > Rbalance), then increasing intrinsic cell 
turnover increases this chance. Using the above argument, we would expect that whenever the baseline burden is so low that there 
is no chance of containment delaying progression (Bbase < Bbalance), increasing intrinsic cell turnover would actually decrease the fold 
change in progression time (because the expansion of the resistant population is always enhanced by containment). There is, how-
ever, an additional effect, which allows for the possibility of increasing the fold change in progression time. During treatment, the 
size of the resistant population will change. If the size decreases to zero, then under aggressive treatment, cure is achieved and the 
path of the resistant population is terminated. Under containment, however, a sensitive population will remain, and tumor dynamics 
will continue until a resistant cell is introduced through mutation. This means, all else being equal, there will be a subset of paths 
under containment that take longer to achieve progression. Since increasing intrinsic cell turnover increases the probability of cure, 
increasing intrinsic cell turnover will accentuate the difference between aggressive treatment and containment. This means that 
even if the baseline burden is below the balance threshold, it is possible to increase the fold change in progression time—although it 
will always stay below 1. (Increasing intrinsic cell turnover can decrease the benefit of aggressive treatment but aggressive treatment 
will always be better.)

(TotalCell Turnover)C =
�R
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=
�
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Focusing on managing resistance, however, challenges this par-
adigm. In particular, strategies that leverage competition are de-
signed to slow progression and work by deliberately maintaining a 
tumor burden (so that cure is normally not possible) (Gatenby, 2009; 
Hansen et al., 2017). This forces a decision between “treating to 
cure” and “treating to slow progression.” It is not obvious how to 
make this decision. Here, we focused on possible treatment re-
sponses of a single patient whose cancer dynamics are understood. 
By ignoring patient-to-patient variability and assuming we perfectly 
understand tumor dynamics within a patient, we are able to focus on 
the complexities of making treatment decisions—complexities that 
are inherent in the decision-making process and not related to addi-
tional uncertainties and heterogeneities.

The decision between attempting cure and delaying pro-
gression depends on how these outcomes are prioritized. It also 
depends on the probability of cure and how much containment 
can delay treatment (a patient's position on the cure–progression 
plane; Figure 2b). The probability of mutation, the baseline bur-
den, and the intrinsic cell turnover all impact a patient's position 
on the cure–progression plane. Another factor that is import-
ant is the number of resistant cells when the treatment decision 
is being made (R0). Increasing R0 will decrease the probability of 
cure (shifts a patient's position to the left). Additionally, the larger 

the R0 is, the more likely that containment delays progression (al-
though the amount of delay is not proportional to R0). This means 
that containment is more likely to be the better option for tumors 
with a larger proportion of resistant cells. Indeed, a high R0, high 
baseline burden, and low mutation rate make it more likely that 
containment is the preferred option. On the other hand, a low R0, 
low baseline burden, and high mutation rate make it more likely 
that aggressive treatment is the better option. Choosing between 
aggressive treatment and containment will be most difficult when 
there is a high probability of cure and containment significantly 
delays progression (i.e., the patient lies in the upper right of the 
cure–progression plane). This occurs when the intrinsic cell turn-
over and baseline burden are high and the initial number of resis-
tant cells and probability of mutation are low.

Of the factors impacting placement on the cure–progression 
plane, baseline burden is particularly interesting because it can be 
easily manipulated by treatment itself (and perhaps other options 
like surgery). Earlier, we recognized that to immediately alleviate pa-
tient suffering, the baseline tumor burden may need to be lowered 
to an acceptable level before considering containment. It is also pos-
sible that a patient's baseline burden could be increased before mak-
ing the final treatment decision. Increasing the baseline burden can 
significantly increase the benefit of containment (increase a patient's 

F I G U R E  4   Probability of progression-free survival (PFS) depends on evolutionary and ecological factors. Different comparison methods 
lead to different conclusions. Panel a: The PFS curves for containment (colored curves) and aggressive treatment (black curve) can have 
very different shapes. Median PFS times are determined by where curves cross the black horizontal dashed line. PFS at 3, 5, and 10 years 
is determined by where curves intersect the shaded areas. For high mutation probabilities (red curves), containment leads to worse PFS (by 
all four comparison methods). For low mutation probabilities (dark blue curves), containment leads to better PFS (by all four comparison 
methods). For an intermediate probability of mutation (light blue curve), whether containment or aggressive treatment is best depends on 
the comparison method. Curves correspond to the positions indicated by shaded area in Panel b. Panel b: Same as Figure 3 except colors 
now indicate how aggressive treatment and containment compare for different measures of PFS. Whether containment or aggressive 
treatment is best depends on whether PFS survival is measured at 3 or 5 years. In some cases, aggressive treatment is always preferred (red 
circles), never preferred (dark blue circles), or preferred only if PFS at 5 years is used (light blue circles). Parameter values used are identical 
to those used in Figure 3. Shaded area indicates the scenarios used to generate the curves in Panel a. See Box 4 for simulation details
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vertical position on the cure–progression plane) while having negligi-
ble impact on the probability of cure. This will only be the case if the 
baseline burden is sufficiently large. When it is known that available 
treatment options cannot effect a cure, it may be advantageous to 
deliberately increase a patient's baseline burden and maximize the 
chances that containment will delay progression. This may involve 
withholding treatment until the baseline is sufficiently large to make 
containment a viable option. Indeed, the baseline burden has to be 
sufficiently large for this strategy to work (Hansen et al., 2017).

Our analysis used idealized versions of containment and aggres-
sive treatment. Containment maintains the tumor burden at the 
baseline burden, and aggressive treatment immediately removes all 
sensitive cells. In practice, it will be difficult to maintain a constant 
tumor burden during containment. An example of a practical approx-
imation to containment is the “adaptive therapy” strategy currently 
being tested in prostate cancer (Zhang et al., 2017). If maximizing 
competition is the aim, there may be better approximations. Another 
alternative is to base treatment decisions on symptoms instead of 
tumor burden. Here, the idea would be to treat just enough to re-
lieve symptoms and use this as a proxy for the maximum acceptable 
baseline. Implementing aggressive treatment involves different dif-
ficulties. In many cases, treating aggressively will in reality remove 
most—but not all—sensitive cells (Fulciniti, Munshi, & Martinez-
Lopez, 2015). This means that real-life aggressive treatment can be 
similar to containment implemented at a very low baseline burden. 
In this case, the main effect of the residual sensitives is to increase 
the number of resistant cells through mutation. When this occurs, 
“real-life containment” should delay progression relative to “real-life 
aggressive treatment,” but “real-life aggressive treatment” could still 
lead to cure. So even in realistic scenarios, a choice must often be 
made between “attempting cure” and “delaying progression.”

The word “cure” is a fraught term in oncology. The nature of can-
cer is that we never really know whether it has gone away. A patient 
may be cured or may simply be a long-term responder who will even-
tually relapse. After aggressive treatment, the tumor burden may be 
below detection level. An undetectable tumor burden may consist 
of only resistant cells, only sensitive cells, or a mixture of both. The 
composition of the residual tumor burden will impact the success of 
long-term maintenance therapies.

In reality, treatment will reduce the number of sensitive cells in-
directly by either lowering the rate of cell replication r or increas-
ing the rate of cell death µ. This means that in addition to changing 
the number of sensitive cells, real-life drug treatment will probably 
also increase the intrinsic cell turnover �

r
. Drug treatment itself can 

shift a patient's position on the plane (upwards and to the right). This 
increases the chances of being in a situation where the choice be-
tween aggressive treatment and containment is difficult.

Our analysis does not consider changes in the immune response 
during treatment. Changes in immunity can change a patient's po-
sition on the cure–progression plane. For example, if the immune 
response improves over time the tumor burden could be reduced 
below the original baseline burden (even in the absence of drugs). 
Additionally, if increased immune response increases the probability 

of cell death, then the intrinsic cell turnover will increase. In this case, 
a combined treatment strategy that uses containment to delay pro-
gression until the immune response is sufficiently strong and then 
implements aggressive treatment may be best. Another time when 
a combined treatment strategy (containment followed by aggressive 
treatment) may be best is when resistance carries certain types of 
fitness costs. A combined treatment strategy has the benefit of le-
veraging competition to delay progression until a patient's position 
on the cure–progression plane shifts to a location where “attempting 
cure” is the better option. A detailed consideration of changing im-
mune response and fitness costs is beyond the scope of this analy-
sis, but a preliminary analysis of these issues can be found in Hansen 
et al. (2017) and its supplemental information. We also highlight some 
of the key considerations regarding fitness costs in Box 6.

When interpreting clinical trial results, heterogeneous patient 
populations can make understanding the outcomes of different 
strategies difficult. In our discussion of PFS curves, we greatly 
simplified these complexities by assuming that all patients were 
identical. This meant that any differences in response to treatment 
were due to stochastic effects of cell dynamics (random chance) 
and not intrinsic differences between patients. In particular, we 
assumed that all patients began with the same number of resistant 
cells. In practice, this will not be the case and the comparison and 
interpretation of PFS curves will be more difficult. This is espe-
cially true when comparing containment and aggressive treatment 
strategies because the choice between these is so dependent on 
a patient's location in the cure–progression plane. This means that 
in trials comparing containment and aggressive treatment, extra 
care should be made to account for differences in patients' initial 
resistant burdens. This can be difficult to do, since it is often not 
possible to directly measure resistant burden, but considering a 
patient's treatment history or possibly the rate of tumor response 
at the beginning of therapy may be indirect ways to estimate this 
burden. This also suggests that cancer–drug pairs with known re-
sistance markers may be good candidates for initial trials of con-
tainment strategies. With good markers of resistance, it may be 
possible to estimate the resistant burden.

BOX 6 Fitness costs associated with resistance

As evidenced by our analysis here, fitness costs are not 
necessary for containment to be beneficial. Despite this, 
fitness costs—and how they manifest—will impact a pa-
tient's position of the cure–progression plane. If resistance 
carries an intrinsic fitness cost (reduced ability to repli-
cate in the absence of competition, i.e., lower r), this will 
increase intrinsic cell turnover and will also increase the 
balance threshold Rbalance. On the other hand, if resistant 
cells have a reduced ability to compete, this will lower the 
balance threshold and increase the benefit of containment 
(Hansen et al., 2017).
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By not including patient-to-patient heterogeneities, our analysis 
emphasizes another important point; differences in treatment re-
sponse are not necessarily linked to differences in patients. Due to 
random fluctuations in tumor cell dynamics, there is a distribution 
of possible responses that a patient may have. This means that even 
though identifying subpopulations of patients with different fea-
tures will help with treatment decisions (and appropriate allocation 
to trial arms), the difficulty of choosing between “attempting cure” 
and “delaying progression” will remain.

Fundamental to choosing between attempting cure and delaying 
progression is understanding the value of each of these outcomes. 
It is difficult to determine these values a priori. One approach we 
explored was to use the expected remaining life span. In our explora-
tion, we greatly simplified things by assuming that tumor progression 
is closely followed by death. Generally, the link between progres-
sion and time to death (i.e., overall survival) is not well understood. 
Sometimes, increasing time to progression increases overall survival; 
other times, this trend is reversed (Beauchemin, Johnston, Lapierre, 
Aissa, & Lachaine, 2015; Foster et al., 2011; Pfeiffer, Hashim, Duran, 
Postma, & Heeg, 2017). In many cases, the relationship between 
delayed progression and overall survival is simply unknown. It is 
possible that the baseline used to measure progression affects this 
relationship, with delayed progression at higher baselines being 
more closely linked to improved overall survival.

Even within a single patient with well-understood tumor dy-
namics, many factors influence the relative value of cure and de-
layed progression. Because of these difficulties, it is important to 
be explicit about the fact that making a treatment decision requires 
choosing between attempting cure and delaying progression. Not 
being explicit about this choice can lead to poor decisions. This is 
true when communicating treatment options to patients, and it is 
also true when setting treatment guidelines and evaluating data 
from clinical trials. Before the advent of evolutionary strategies 
aimed at resistance management, there was often no choice. The 
aims of cure and delayed progression coincided. Now that there is 
a choice, it is critical we reformulate our decision-making processes 
to reflect this.
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