
S1 Text: Aggressive treatment and/or containment may

prevent treatment failure.

Immunity may increase with time for a variety of reasons. For example, the patient may
have an adaptive response to an infection or their immune system may recover after being
suppressed by certain cancer treatments. Because we allow for the possibility that immunity
may increase with time, it is possible that aggressive treatment and/or containment will
manage the infection indefinitely (i.e., completely prevent resistance emergence). In this
case an infection has two distinct phases. During the first phase immunity is not strong
enough to control the infection and the resistant density is increasing. During this phase of
the infection our analysis from the main text holds. In the second phase, immunity is strong
enough to control the resistant population and the resistant density is no longer increasing.
During this phase both containment and aggressive treatment will prevent resistance emer-
gence. Note that when the immune response is strong, containment (as defined in the main
text) may not be possible since the sensitive density may also be decreasing. In this case
withholding treatment is an effective strategy.

This means that any strategy that manages the infection until immunity is sufficiently strong
will prevent resistance emergence. In general there will be scenarios where (i) aggressive
treatment prevents treatment failure but containment does not, (ii) containment prevents
resistance emergence but aggressive treatment does not, (iii) both aggressive treatment and
containment prevent resistance emergence and (iv) neither aggressive treatment nor contain-
ment prevent resistance emergence. Our analysis applies to all of these scenarios.

S2 Text: Standard logistic formulation

Equation (1) from the main text is a standard logistic equation with a (possibly time-varying)
carrying capacity. To see this note that,

Ṙ(t) = rR(t)(1− δR(t))− µ(t)R(t),

= (r − µ(t))R(t)(1− δr

r − µ(t)
R),

and so the carrying capacity is RCarry = r−µ(t)
rδ

. If drug-resistance carries a fitness cost then
the carrying capacity becomes

RCarry =
(1− cI)r − µ(t)

(1− cI)r(1 + cC)δ
=

1

(1 + cC)δ

(
1− µ(t)

(1− cI)r

)
where drug resistance reduces a pathogens intrinsic replication rate by a factor (1− cI) and
increases its sensitivity to competition by a factor (1 + cC). Finally note that if immunity
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is constant then this carrying capacity is constant and becomes the self-limiting density
described in the “Clinical gains” section of the main text

Rlim =
1

(1 + cC)δ

(
1− µ

(1− cI)r

)
.

S3 Text: Derivation of the balance threshold

The expansion rate for a purely resistant infection is described by (Equation (1) from the
main text)

Ṙ(t) = rR(t) (1− δR(t))︸ ︷︷ ︸
reduction in

replication due
to competition

−µ(t)R(t). (S.1)

If the patient also harbours drug-sensitive pathogens then the resistant expansion rate will
be modified by these sensitive pathogens. In particular, since we assume that all pathogens
(regardless of drug sensitivity) contribute equally to competition, the reduction in replication
will change from (1−δR(t)) to (1−δP (t)), where P is the total pathogen density (both drug
sensitive and drug resistant). Additionally, the drug sensitive pathogens will be replicating
and a proportion ε of their progeny will be drug-resistant (due to mutation). Since the
replication process is similar for both drug-sensitive and drug-resistant pathogens, the term
describing drug-sensitive replication is similar to the first term in Equation (1). Namely,
drug-sensitive replication is described by r(P (t)−R(t))(1− δP (t)), where P (t)−R(t) is the
sensitive density at time t. The rate of mutational input is therefore εr(P (t) − R(t))(1 −
δP (t)). Therefore, in the presence of sensitive pathogen, the resistant expansion rate is given
by

Ṙ(t) = rR(t)(1− δP (t))− µ(t)R(t) + εr(P (t)−R(t))(1− δP (t)). (S.2)

During containment the total pathogen density is maintained at the acceptable burden
(P (t) = Pmax) and so Equation (S.2) becomes,

Ṙ(t) = rR(t)(1− δPmax)︸ ︷︷ ︸
first term

−µ(t)R(t) + εr(Pmax −R(t))(1− δPmax). (S.3)

Equation (S.3) can be rearranged to be written as the sum of three terms: the resistant
expansion rate ignoring the effect of the sensitive density, the benefit of competitive suppres-
sion and the cost of mutational input. To see this, consider the first term in Equation (S.3)
which describes the resistant replication rate:

rR(t)(1− δPmax) = rR(t) [1− δR(t)− δ(Pmax −R(t))] ,

= rR(t) [1− δR(t)]︸ ︷︷ ︸
resistant replication rate

ignoring the effect of
sensitive pathogen

− rR(t)δ [Pmax −R(t)]︸ ︷︷ ︸
competitive suppression
of resistant replication

due to sensitive pathogen

.
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Substituting this expression into Equation (S.3) results in

Ṙ(t) = rR(t) [1− δR(t)]− rR(t)δ [Pmax −R(t)]− µ(t)R(t) + εr(Pmax −R(t))(1− δPmax),

which can be rearranged to produce Equation (2) from the main text:

Ṙ(t) = rR(t) [1− δR(t)]− µ(t)R(t)︸ ︷︷ ︸
resistant expansion rate

ignoring the effect of
sensitive pathogen

− rR(t)δ [Pmax −R(t)]︸ ︷︷ ︸
competitive suppression

(benefit of sensitive pathogen)

+ εr(Pmax −R(t))(1− δPmax)︸ ︷︷ ︸
mutational input

(cost of sensitive pathogen)

.

(S.4)

Adding the fitness costs of resistance to Equation (S.4), we recover Equation (3) from the
main text which describes the expansion of the resistant population under containment:

Ṙ = (1− cI)rR (1− (1 + cC)δR)− µ(t)R

− (1− cI)r(1 + cC)δR (Pmax −R)︸ ︷︷ ︸
competitive suppression

(benefit of sensitive pathogen)

+ εr (Pmax −R) (1− δPmax)︸ ︷︷ ︸
mutational input

(cost of sensitive pathogen)

.

Since the replication rate cannot be negative we assume that Pmax ≤ 1
(1+cC)δ

. If Pmax is

greater than 1
(1+cC)δ

then containment at the lower burden 1
(1+cC)δ

will prevent resistance
expansion.

A sensitive density will be advantageous whenever benefit exceeds cost. In other words,
whenever

(1− cI)r(1 + cC)δR (Pmax −R) > εr (Pmax −R) (1− δPmax) . (S.5)

Rearranging Equation (S.5) gives,

R >
ε (1− δPmax)

(1− cI)(1 + cC)δ
= Rbalance.

S4 Text: Derivation of Equation 5 from main text

Maximizing the sensitive density will be advantageous whenever the resistant density exceeds
the balance threshold. During the management period the resistant density is less than
the acceptable burden Pmax. This means that maximising the sensitive density will be
advantageous only when,

Pmax > R(t) > Rbalance =
ε (1− δPmax)

(1− cI)(1 + cC)δ
.

In paticular, this requires that the acceptable burden is greater than the balance threshold

Pmax > Rbalance =
ε (1− δPmax)

(1− cI)(1 + cC)δ
(S.6)
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Rearranging Equation (S.6) we have that

Pmax >
ε

δ (ε+ (1− cI)(1 + cC))
.

S5 Text: Distinguishing between the scenarios in Fig 2C

and 2D of the main text

Consider any fixed set of parameter values where the balance threshold Rbalance is less than
the acceptable burden Pmax. We know that if the starting density R(0) exceeds the balance
threshold then containment is best (this is the scenario depicted in Figure 2B of the main
text). If the starting density, however, is below the balance threshold then containment may
or may not be better than aggressive treatment (we may either be in the case depicted by
Figure 2C or the case depicted by Figure 2D of the main text). Here we show that while
the resistant density is low we will be in the situation depicted by Figure 2C (i.e., aggressive
treatment is best). Once the resistant density exceeds a certain value (denoted R∗(0)) then
we will be in the scenario depicted in Figure 2D of the main text (i.e., containment is best).
The precise value of R∗(0) will depend on the parameter values. In the proof below we simply
prove the existence of R∗(0) (i.e., we do not provide an explicit expression for R∗(0)). In
S6 Text we provide an equation which implicitly defines R∗(0) in the case that the immune
function µ is constant (i.e., does not change with time).

Claim 1. Let the dynamics of the resistant density be described by

ṘA(t) = (1− cI)r(1− (1 + cC)δRA(t))RA(t)− µ(t)RA(t) (S.7)

under aggressive treatment and by

ṘC(t) = (1−cI)r(1− (1+cC)δPmax)RC(t)−µ(t)RC(t)+ εr(1−δPmax)(Pmax−RC(t)) (S.8)

under containment, where the immune function µ is a non-decreasing function of time. Con-
sider the scenario where the balance threshold is less than the acceptable burden (Rbalance <
Pmax). Then there is a resistant density R∗(0) such that

(i) if the starting resistant density is below R∗(0) then aggressive treatment delays treat-
ment failure longer than containment and

(ii) if the starting resistant density is above RC then containment delays treatment failure
longer than aggressive treatment.

Proof. We begin by proving this result for the case when the immune function µ is constant.
Let tA be the time to treatment failure under aggressive treatment and tC the time to
treatment failure under containment. In S6 Text we derive explicit closed form solutions for
tA and tC for the case when µ is constant. These expressions are continuous functions of the
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S1 Fig: The effect of increasing the starting resistant density when the immune
function µ is constant. Panel A: The dynamics of the resistant density under containment
(dashed red) and aggressive treatment (solid red). When the starting resistant density
is R∗(0), treatment failure occurs at the same time for both containment and aggressive
treatment (the two curves intersect at the acceptable burden). The points A and B indicate
the resistant density R1(0) on the containment curve and the aggressive treatment curve
respectively. Panel B: This figure shows the curves in from Panel A translated to the
left so that points A and B correspond to time t = 0. This shows the dynamics of the
resistant density under containment (dashed red) and aggressive treatment (solid red) when
the starting resistant density is R1(0). Because the aggressive treatment curve was shifted
more than the containment curve the two curves now intersect below the acceptable burden.
Containment delays treatment failure longer than aggressive treatment when the starting
resistant density is greater than R∗(0).

model parameters and the starting density R(0). We also know that if R(0) ≥ Rbalance then
tC > tA (this is the case depicted in Figure 2B of the main text). Additionally, if R(0) = 0
(and ε > 0) then tA > tC . Then, since tA and tC are continuous functions of the starting
resistant density, there is a starting resistant density R1(0) such that R1(0) < Rbalance and
tC = tA. This proves that there is at least one starting resistant density which is less than
Rbalance and for which tC = tA. Let R∗(0) be the smallest starting resistant density where
tA = tC . S1 Fig, Panel A shows hypothetical curves for the resistant density starting at
R∗(0) under aggressive treatment and containment. Note that these curves intersect at the
acceptable burden (i.e., tA = tC).

Now, since µ is constant the rate of change of the resistant density depends only on the resis-
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tant density (i.e., Equation (S.7) and Equation (S.8) do not explicitly depend on time). This
means that if the starting resistant density was some larger value R1(0) then the resistant
density under containment would follow the same path (but shifted in time). Similarly the
resistant density under aggressive treatment would also follow the same path (but shifted
in time). In particular the containment curve in S1 Fig Panel A would be shifted to the
left so that point A corresponds to time t = 0 and the aggressive treatment curve in S1
Fig Panel A would be shifted to the left so that point B corresponds to time t = 0. S1 Fig
Panel B shows the shifted curves which describe the dynamics of the resistant density under
containment and aggressive treatment when the starting density is R1(0). Since the curve
for aggressive treatment must be shifted more (i.e., in S1 Fig Panel A point B is further to
the right than point A) the two shifted curves intersect at a lower value than the two orig-
inal curves (i.e., they intersect below the acceptable burden). In other words, containment
takes longer to fail than aggressive treatment. This argument is true for any R1(0) > R∗(0)
and hence containment will be best whenever the starting resistant density exceeds R∗(0).
Additionally, since R∗(0) was chosen to be the minimum starting resistant density where
tA ≤ tC (and tA > tC when R(0) = 0) by continuity we also know that aggressive treat-
ment will be best whenever the starting resistant density is below R∗(0). This proves the
claim for the case when µ is constant. S6 Text also contains an alternative proof of this claim.

Now consider the case when µ is a non-decreasing function of time. Let R∗(0) be the smallest
starting resistant density where tA = tC in the case where µ is a non-decreasing function
of time. S2 Fig Panel A shows the resistant density under containment and aggressive
treatment when the starting resistant density R∗(0). Recovering the resistant dynamics for
the case when the starting resistant density is R1(0) requires two steps. The first step,
which is depicted in S2 Fig Panel B, is to translate the curves to the left so that points
A and B correspond to time t = 0. This step is identical to what was done for the case
when µ is constant. The second step is to account for the fact that the immune response
at any particular resistant density will be less than or equal to the immune response at the
same resistant density in the unshifted curves (because µ is a non-decreasing function of
time). This implies that the rate of change of the actual resistant density will be greater
than that depicted in S2 Fig Panel B. Additionally, since the aggressive treatment curve was
translated from a later time (i.e., point B in S2 Fig Panel A occurs at a later time than
point A) the increase in its rate of change will be at least as great as for the containment
curve. This means that the curves depicting the actual dynamics under containment and
aggressive treatment will intersect at a lower resistant density (compare points C2 and C3

in S2 Fig Panel C). S3 Fig shows a magnified version of the curves in S3 Fig Panel C. Note
that because the magnitude of the change in immune function will be greater for aggressive
treatment the distance between the containment and aggressive treatment curve will be less
in Panel C than in Panel B. This means that the two curves intersect at a lower resistant
density (point C3 is below point C2). This argument is true for any R1(0) > R∗(0) and hence
containment will be best whenever the starting resistant density exceeds R∗(0). Additionally,
since R∗(0) was chosen to be the minimum starting resistant density where tA ≤ tC (and
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tA > tC when R(0) = 0) by continuity we also know that aggressive treatment will be best
whenever the starting resistant density is below R∗(0).

S6 Text: Supporting calculations for Fig 3 of main text.

Let RA denote the resistant density under aggressive treatment and let RC denote the resis-
tant density under containment. Because we assume that aggressive treatment immediately
removes the entire drug-sensitive population, the expansion of the resistant density under
aggressive treatment is described by

ṘA = (1− cI)rRA(1− (1 + cC)δRA)− µRA. (S.9)

Assuming that the immune response µ is constant the solution to this equation is

RA(t) =

(
1− µ

(1−cI)r

)
R(0) exp [((1− cI)r − µ)t](

1− µ
(1−cI)r

)
+R(0)(1 + cC)δ (exp [((1− cI)r − µ)t]− 1)

, (S.10)

where R(0) is the resistant density at the start of the management period. If aggressive
treatment fails at time t = tA then RA(tA) = Pmax. Substituting this equality into Equation
(S.10) gives,

tA =
1

((1− cI)r − µ)
ln

[
Pmax
R(0)

(1− cI)r(1−R(0)(1 + cC)δ)− µ
(1− cI)r(1− Pmax(1 + cC)δ)− µ

]
. (S.11)

Under containment the expansion of the resistant density is described by

ṘC = (1− cI)rRC(1− (1 + cC)δPmax)− µRC + εr (1− δPmax) (Pmax −RC) .

Assuming that the immune response µ is constant the solution to this equation is

RC(t) = (B +R(0)) exp [((1− cI)r(1− (1 + cC)δPmax)− εr(1− δPmax)− µ) t]−B, (S.12)

where R(0) is the resistant density at the beginning of the management period and

B =
εr (1− δPmax)Pmax

(1− cI)r(1− (1 + cC)δPmax)− εr(1− δPmax)− µ
.

If containment fails at time tC then RC(tC) = Pmax. Substituting this equality into Equation
(S.12) gives,

tC =
1

(1− cI)rD
ln

[
Pmax
R(0)

(
(1− cI)D + ε (1− δPmax)

(1− cI)D + ε (1− δPmax) Pmax
R(0)

)]
, (S.13)
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S2 Fig: The effect of increasing the starting resistant density when the immune
function µ is a non-decreasing function of time. Panel A: The dynamics of the
resistant density under containment (dashed red) and aggressive treatment (solid red). When
the starting resistant density is R∗(0) treatment failure occurs at the same time for both
containment and aggressive treatment (the two curves intersect at the acceptable burden).
The points A and B indicate the resistant density R1(0) on the containment curve and the
aggressive treatment curve respectively. There are two steps involved in obtaining the actual
resistance dynamics from these curves. Panel B: Step One. This figure shows the curves
from Panel A translated to the left so that points A and B correspond to time t = 0. Panel
C: Step Two. The rate of change of the actual containment curve (black dashed) will be
greater than the one shown in Panel B (i.e., the black dashed curve is above the red dashed
curve). This is because the immune response of the shifted curve will be less. This difference
will increase in time. This is also true for the aggressive treatment curve (black solid), but
the difference will be greater because the aggressive treatment curve involved a larger shift
in time. This shows the dynamics of the resistant density under containment (dashed red)
and aggressive treatment (solid red) when the starting resistant density is R1(0). Because
the aggressive treatment curve was shifted more than the containment curve the two curves
now intersect at an even lower resistant density (point C3 is below point C2). Containment
delays treatment failure longer than aggressive treatment when the starting resistant density
is greater than R∗(0).
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S3 Fig: Magnified version of the curves in S2 Fig. The black horizontal lines indicate
the distance between the containment curve and the aggressive treatment curve at different
resistant densities. Panel A: The red curves from Panel C of S2 Fig. Panel B: The black
curves from Panel C of S2 Fig. Notice that the black horizontal lines in Panel B are shorter
than the corresponding lines in Panel B. This indicates that accounting for the fact that the
immune function is a non-decreasing function of time actually decreases the distance between
the containment and aggressive treatment curves. This means that they will intersect at a
lower resistant density.
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where
D = 1− µ

(1− cI)r
− (1 + cC)δPmax −

ε

(1− cI)
(1− δPmax) .

Therefore, from Equation (S.11) and (S.13) we have,

tC
tA

=

1
(1−cI)rD

ln

[
Pmax
R(0)

(
(1−cI)D+ε(1−δPmax)

(1−cI)D+ε(1−δPmax)Pmax
R(0)

)]
1

((1−cI)r−µ)
ln
[
Pmax
R(0)

(1−cI)r(1−R(0)(1+cC)δ)−µ
(1−cI)r(1−Pmax(1+cC)δ)−µ

] . (S.14)

Now, from Equation (S.9), ṘA = 0 when RA = 1
(1+cC)δ

(
1− µ

(1−cI)r

)
. This is the self-limiting

density discussed in the main text,

Rlim
.
=

1

(1 + cC)δ

(
1− µ

(1− cI)r

)
.

Now define the variables: R̃balance = Rbalance
Rlim

, P̃max = Pmax
Rlim

and R̃0 = R(0)
Rlim

. Substituting these

variables into Equation (S.14) allows us to express the ratio tC
tA

in terms of how the three
pathogen densities R(0), Pmax and Rbalance compare to Rlim. That is,

tC
tA

=
1

1− P̃max − R̃balance

ln

[
P̃max
R̃0

(
(1−P̃max)

(1−P̃max)+R̃balance

(
P̃max
R̃0

−1
)
)]

ln

[
P̃max
R̃0

(1−R̃0)
(1−P̃max)

] . (S.15)

Equation (S.15) is the equation that was used to generate Fig. 3 of the main text. In Fig. 3
the acceptable burden was allowed to vary from 10% to 80% of Rlim (i.e, P̃max ∈ [0.1, 0.8])
and the resistant density at the start of the management period was allowed to vary from
the balance threshold to 80% of Rlim (i.e, R̃0 ∈ [R̃balance, 0.8]). Here we reproduce Fig.
3 from the main text (S4 Fig; Panel A) but also include the possibility that the starting
resistant density is below the balance threshold (S4 Fig; Panel B). Together, Panel A and
Panel B of S4 Fig allow the starting resistant density to vary from 10−8% to 80% of Rlim

(i.e, R̃0 ∈ [10−10, 0.8]). These choices cover a wide range of possibilities.

The chosen parameter range, R̃balance ∈ [0, 0.01] requires a bit more explanation. Note that,

R̃balance =
ε (1− δPmax)

(1− cI)(1 + cC)δ

(1 + cC)δ(
1− µ

(1−cI)r

) ,
=

ε (1− δPmax) r
(1− cI)r − µ

,

≤ ε

1− cI
1

1− µ
(1−cI)r

.
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S4 Fig: Ratio of time to treatment failure under containment to time to treatment fail-
ure under aggressive treatment. Each color corresponds to a different acceptable burden
(blue:10%, green: 20%, red: 30%, purple:60% and black:80% of Rlim). R̃balance is varied in
the range of [0, 0.01]. For each color, the upper curve corresponds to R̃balance = 0 and the
lower curve to R̃balance = 0.01. Panel A: Values are plotted for R̃0 ≥ R̃balance. (The starting
resistant density exceeds the balance threshold.) Panel B: The same as Panel A except for
R̃0 < R̃balance. (The starting resistant density is below the balance threshold.) Note that the
horizontal axis in Panel B is log R̃0.
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The quantity (1−cI)r
µ

can be thought of as the expected number of progeny produced by

an average resistant pathogen (assuming there is no competition). If (1−cI)r
µ
≥ 1.1 and the

reduction in intrinsic replication (1− cI) ≥ 0.1 then we have,

R̃balance ≤ ε110.

Under these assumptions R̃balance will be less than 0.01 provided the probability of mutation
is not too large (i.e., ε < 9.1 × 10−5). Alternatively, if (1−cI)r

µ
≥ 2 and the reduction in

intrinsic replication (1− cI) ≥ 0.1 then R̃balance will be less than 0.01 provided the mutation
rate ε is less than 5× 10−4.

We can also use this example to gain some insight into the situation when R(0) < Rbalance <
Pmax (i.e., the cases depicted in Figure 2 C-D in the main text). In particular we will
show that there is a resistant density R∗(0) such that aggressive treatment is best whenever
R(0) < R∗(0) and containment is best whenever R(0) > R∗(0).

Containment will be at least as good as aggressive treatment whenever tC ≥ tA. By Equation
(S.15) this will occur whenever

R̃0 ≤ f(R̃0) (S.16)

where

f(R̃0) = P̃max

[
R̃0(1− P̃max)
P̃max(1− R̃0)

]A
− R̃balance

(P̃max − R̃0)

1− P̃max

and A = 1 − P̃max − R̃balance. We will now show that the equality in Equation (S.16)
can hold for at most one value of R̃0 ∈ [0, P̃max). First note that if R̃0 = 0 then f(0) =

− R̃balanceP̃max
1−P̃max

< 0 and hence (assuming that ε 6= 0) Equation (S.16) is not satisfied when

R̃0 = 0. Additionally, when R̃0 = P̃max we have that f(P̃max) = P̃max and ∂f

∂R̃0

∣∣∣
P̃max

= 1.

Note also that if R̃0 = P̃max − ε then

f(P̃max − ε) = P̃max

[
(P̃max − ε)(1− P̃max)
P̃max(1− P̃max + ε)

]A
− R̃balance

[
ε

1− P̃max

]
.
= T (ε)

and

∂T

∂ε
= −P̃maxA

[
(P̃max − ε)(1− P̃max)
P̃max(1− P̃max + ε)

]A−1
1− P̃max

P̃max(1− P̃max + ε)2
− R̃balance

1− P̃max
< 0

and so as R̃0 approaches P̃max from the left, the function f decreases to approach P̃max. This
means that f must cross the R̃0 = R̃0 line an odd number of times.
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If f crosses the R̃0 = R̃0 line only once then this proves the claim. In particular the crossing
occurs when R(0) = R∗(0). In other words, R∗(0) is implicitly defined when R(0) = R∗(0)
and equality holds in Equation (S.16).

Suppose, on the other hand, that f crosses the R̃0 = R̃0 line more than once. Let R̃1 and

R̃2 denote the values of R̃0 at the first two crossings. Then we must have that ∂f

∂R̃0

∣∣∣
R̃1

>

∂R̃0

∂R̃0

∣∣∣
R̃1

= 1 and ∂f

∂R̃0

∣∣∣
R̃2

< ∂R̃0

∂R̃0

∣∣∣
R̃2

= 1. Since ∂f

∂R̃0
is continuous this means that there must

be a R̃3 ∈ (R̃1, R̃2) such that ∂f

∂R̃0

∣∣∣
R̃3

= 1.

In other words,

∂f

∂R̃0

∣∣∣∣
R̃3

= P̃maxA

[
R̃3(1− P̃max)
P̃max(1− R̃3)

]A [
1

R̃3(1− R̃3)

]
+

R̃balance

1− P̃max
= 1. (S.17)

After some simplification Equation (S.17) becomes[
P̃max

R̃3

]1−A

=

[
1− R̃3

1− P̃max

]1+A

. (S.18)

Substituting R̃3 = γP̃max for some γ ∈ (0, 1) into Equation (S.18) results in

P̃max =
1−

(
1
γ

) 1−A
1+A

γ −
(

1
γ

) 1−A
1+A

.
= B(γ). (S.19)

But

∂B

∂γ
=

1−A
1+A

(
1
γ

) 1−A
1+A
(

1− 1
γ

)
+
(

1
γ

) 1−A
1+A − 1(

γ −
(

1
γ

) 1−A
1+A

)2 < 0,

which implies that there is at most one γ that will satisfy Equation (S.19). Therefore, f
cannot cross the R̃0 = R̃0 line more than once.

S7 Text: Minimizing the resistant expansion rate will

maximally delay treatment failure

Here we provide a condition which – when it is satisfied – guarantees that minimising the
resistant expansion rate at each instant in time will maximally delay treatment failure. We
then demonstrate that our main model of infection dynamics (Equation (3) in the main text)
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satisfies this condition.

Statement of condition: If the minimum achievable resistant expansion rate at any in-
stant of the infection depends only on (i) that instant t and (ii) the resistant density at that
instant R(t), then minimizing the resistant expansion rate at each instant will maximally
delay treatment failure. More formally, if the minimum achievable resistant expansion rate
at the point (t, R(t)) depends only on the point (t, R(t)) and not on other factors such as the
path taken to reach that point, then minimizing the resistant expansion rate at each instant
in time will maximally delay treatment failure. We will refer to this treatment regimen as
the ”minimizing regimen”.

Explanation of condition: S5 Fig provides a pictoral explanation for why the above
statement is true. Let RM denote the resistant density trajectory that corresponds to the
“Minimizing regimen”. Let RA be any other possible resistant density trajectory (any
“Alternative regimen” that doesn’t minimise the resistant expansion rate at every single
instant). These two trajectories coincide at the start of the management period (t = 0).
Suppose these trajectories start to differ at time t̄. This implies that the resistant expansion
rates of these two trajectories must differ at t̄. In particular, it must be (by definition) that
the resistant expansion rate of the minimizing regimen is less than that of the alternative
regimen. If Ṙ denotes the resistant expansion rate then,

ṘM(t̄) < ṘA(t̄).

This means that at the instant t̄, RA is increasing more quickly (or decreasing more slowly)
than RM . Hence, RM will never exceed RA. Every time these two trajectories meet, they
will either continue to coincide or RM will be driven below RA. Since the resistant density
corresponding to the minimizing regimen is always less than or equal to the resistant density
corresponding to the alternative regimen, it cannot exceed the acceptable burden before
RA. The minimizing strategy will delay treatment failure at least as long as the alternative
regimen. Since this argument holds for any alternative regimen, the minimizing strategy will
maximally delay treatment failure.

Model specific comments: We now show that the conceptual model used in our main
analysis (Equation (3) of the main text) satisfies the above mentioned condition. For our
main model, the resistant expansion rate is

Ṙ(t) = (1− cI)r (1− (1 + cC)δP (t))R(t)− µ(t)R(t) + εr (1− δP (t)) (P (t)−R(t)), (S.20)

where the total pathogen density P (t) lies in the range of [R(t), Pmax]. When P (t) = R(t)
the sensitive population has been removed and when P (t) = Pmax the sensitive density is
at its maximum clinically acceptable value (i.e., Pmax − R(t)). For a fixed set of model pa-
rameters, the resistant expansion rate (Equation (S.20)) depends only on the time t (which
will determine the immune response µ(t)), the resistant density R(t) and the total pathogen
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S5 Fig: Minimizing the resistant expansion rate at each instant in time will
maximally delay treatment failure. The minimizing regimen chooses the sensitive den-
sity that minimizes the resistant expansion rate at each instant in time (red curve). This
curve will never exceed the curve resulting from any other alternative strategy (for example,
the black curve). In this particular example, the two trajectories initially coincide at the
beginning of the management period (t = 0) and at one other time ta (indicated by black
dot). In both cases the curve corresponding to the minimizing regimen (red curve) is driven
below the alternative curve (black curve).
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density P (t). For a fixed point (t, R(t)), the resistant expansion rate can be modified by
changing the sensitive density (which amounts to picking total pathogen densities P (t) in the
range [R(t), Pmax]). The allowed range of pathogen densities depends only on R(t). Hence
the achievable range of resistant expansion rates at the point (t, R(t)) is completely deter-
mined by the point (t, R(t)).

This tells us that, if at every instant t of the infection, we are free to choose any pathogen
density in the range of [R(t), Pmax] then the time to treatment failure will be maximally
delayed by choosing the sensitive density that minimises the resistant expansion rate. In
particular, the analysis in the main text, indicates that the resistant expansion rate will
be minimized by removing the sensitive pathogen (i.e., choosing P (t) = R(t)) when the
resistant density is less than the balance threshold and maintaining the maximum clinically
acceptable sensitive density (i.e., choosing P (t) = Pmax) when the resistant density exceeds
the balance threshold. Note that, if the resistant density is below the balance threshold at
the start of the management period then this “minimizing regimen” requires deliberately
increasing the sensitive density if the resistant density eventually reaches and exceeds the
balance threshold.

S8 Text: Slowing resistance emergence: immediate ver-

sus future effects of the sensitive population

If the resistant expansion rate depends on the current sensitive and resistant densities but
not on previous pathogen densities, then maximizing the sensitive density is advantageous
whenever it slows the expansion of the resistant population and detrimental whenever it in-
creases it. In particular, this statement is true when the resistant expansion rate is described
by Equation (3) from the main text and also the alternative models discussed in S9 Text.

If, on the other hand, previous pathogen densities are important then determining whether or
not maximizing sensitive pathogen is advantageous is more complicated. Previous pathogen
densities may be important if, for example, they affect the current immune response or the
current resource availability. Here we discuss, in the context of our main model (Equation
(3) from main text), how these generalities can change the results.

Immunity with history dependence

It may be advantageous to temporarily elevate the resistant expansion rate if this will lead to
an improved immune response later in the infection. Suppose the patient’s immune response
is determined by the accumulated pathogen burden he has experienced during his infection.
In particular, suppose that the greater the accumulated pathogen burden – the stronger the
immune response.
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If the immunity is an increasing function of total experienced pathogen burden PBur(t) =∫ t
0
P (τ)dτ , then the model for containment used in our main analysis becomes,

Ṙ = (1− cI)r (1− (1 + cC)δR)R− µ(PBur(t))R

−(1− cI)r(1 + cC)δR(Pmax −R) + εr (1− δPmax) (Pmax −R),

where dµ
dPBur
> 0.

In this case, the immediate effect of sensitive pathogen on the resistant expansion rate is
unchanged. That is, the instantaneous expansion of the resistant population is minimised
by (i) removing the entire sensitive population if R(t) < Rbalance and by (ii) maximising
the sensitive density if R(t) > Rbalance. These assumptions about immunity, however, will
increase the number of scenarios where containment is better than aggressive treatment. To
see this, consider the four possibilities depicted in Fig. 2 of the main text:

Possibility A: If Rbalance > Pmax then maximising the sensitive density will always in-
crease the expansion rate of the resistant population. In this case, however, containment
may still be better than aggressive treatment if it sufficiently augments the immune response.

Possibility B: If Pmax > R(0) > Rbalance then maximising the sensitive density will decrease
the expansion rate of the resistant population whenever the resistant density is increasing. In
this case, containment minimises the instantaneous expansion of the resistant density AND
maximizes the immune response – containment is better than aggressive treatment.

Possibilities C-D: If Pmax > Rbalance > R(0) then maximising the sensitive density initially
increases the resistant expansion rate and then later (i.e., when the resistant density exceeds
the balance threshold) decreases the resistant expansion rate. If immunity increases with
PBur then there will be an increased number of scenarios where containment out performs
aggressive treatment because of augmented immunity.

Opposite assumptions about immunity lead to opposite conclusions. If the immune response
is a decreasing function of total past pathogen burden (which can occur, for example, with
immune exhaustion, then elevating the resistant expansion rate may be advantageous if it
leads to decreased pathogen burden. This assumption about immunity will decrease the
number of scenarios where containment is better than aggressive treatment. To see this, let
immunity be a decreasing function of total experienced pathogen burden (i.e., dµ

dPBur
< 0) and

consider the four possibilities depicted in Fig. 2 of the main text:

Possibility A: If Rbalance > Pmax then maximising the sensitive density will always in-
crease the expansion rate of the resistant population. In this case, aggressive treatment will
minimize the instantaneous resistant expansion rate and maximize immunity. Aggressive
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treatment is best.

Possibility B: If Pmax > R(0) > Rbalance then maximising the sensitive density will always
decrease the expansion rate of the resistant population while the resistance is increasing. In
this case, containment minimises the instantaneous resistant expansion rate but also min-
imises the immune response. Aggressive treatment may be better than containment if it
leads to a sufficiently large immune response.

Possibilities C-D: If Pmax > Rbalance > R(0) then maximising the sensitive density ini-
tially increases the resistant expansion rate and then, when the resistant density exceeds the
balance threshold, decreases the resistant expansion rate. If immunity decreases with PBur
then there will be an increased number of scenarios where aggressive treatment outperforms
containment because of augmented immunity.

Resource dynamics with history effects

If competition is mediated through a resource then changing resource levels (due to pathogen
use) during the management period will change the strength of competition. If the avail-
ability of resources is a decreasing function of total experienced pathogen burden PBur(t) =∫ t

0
P (τ)dτ , this can be captured in our original model (Equation (3) in main text) by as-

suming that the effect of competition (as determined by the coefficient δ ) is an increasing
function of PBur(t). With this assumption, the model used in our main analysis becomes,

Ṙ = (1− cI)r (1− (1 + cC)δ(PBur(t))R)R− µ(t)R

−(1− cI)r(1− cC)δ(PBur(t))R(Pmax −R) + εr (1− δ(PBur(t))Pmax) (Pmax −R),

where dδ
dPBur
> 0.

In this case, the immediate effect of sensitive pathogen on the resistant expansion rate is still
unchanged. That is, the instantaneous expansion of the resistant population is minimised
by (i) removing the entire sensitive population if R(t) < Rbalance and by (ii) maximising the
sensitive density if R(t) > Rbalance. The balance threshold Rbalance does, however, depend on
δ. In particular,

∂

∂δ
Rbalance =

−ε
(1− cI)(1− cC)δ2

< 0. (S.21)

Hence, as PBur increases, δ will increase and Rbalance will decrease. In other words, Rbalance

will decrease as the infection progresses. This means that once R > Rbalance this will continue
to be true while the resistance density in increasing.

Let Rbalance(0) denote the balance threshold at the start of the management period and con-
sider the four possibilities depicted in Fig. 2 of the main text:
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Possibility A: If Rbalance(0) > Pmax then maximising the sensitive density initially increases
the expansion rate of the resistant population. In this case, however, containment may still
be better than aggressive treatment if it can sufficiently augment the effect of competition
and adequately (and rapidly) lower the balance threshold.

Possibility B: If Pmax > R(0) > Rbalance(0) then maximising the sensitive density will
always decrease the expansion rate of the resistant population while resistance emergence is
a threat. In this case, containment minimises the instantaneous expansion of the resistant
density AND maximizes the effect of competition – containment is better than aggressive
treatment.

Possibilities C-D: If Pmax > Rbalance(0) > R(0) then maximising the sensitive density
initially increases the resistant expansion rate and then, when the resistant density exceeds
the balance threshold, decreases the resistant expansion rate. If the effect of competition
increases with PBur then there will be an increased number of scenarios where containment
out performs aggressive treatment because of enhanced competition.

So far we have assumed that resources are continually depleted through-out the infection. If
the patient is able to replenish resources before treatment failure occurs, then this will not
be true. For example, if the patient’s physiological response is to rapidly replenish resources
once they become too low then maximizing the sensitive density even if the resistant density
exceeds the balance threshold may be detrimental. In this case maintaining a lower sensitive
density may be preferable if it can prevent the resource level from becoming too low and
triggering a sudden influx of resources.

In general, the details of the patient’s response to resource depletion are important and need
to be evaluated on a case by case basis. Here we consider an extremely simple response
to resource depletion in order to see how results can differ from the case where there is no
appreciable replenishment of resources. Suppose the patient responds to even the slightest
resource depletion with an immediate, large influx of new resources. In this extreme case
the presence of pathogen in the patient will actually cause the resource level to increase. In
particular, we will assume that as PBur increases, δ will decrease (sensitivity to competition
decreases). By Equation (S.21) this means that Rbalance will increase as the infection pro-
gresses.

Possibility A: If Rbalance(0) > Pmax then sensitive pathogen will always increase the expan-
sion rate of the resistant population. Aggressive treatment is best.

Possibility B: If Pmax > R(0) > Rbalance(0) then sensitive pathogen will initially decrease
the expansion rate of the resistant population. In this case, containment will initially mini-
mize the instantaneous resistant expansion rate but, since the balance threshold is increasing,
it is possible that there will be a period of time later in the infection when R < Rbalance and
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sensitive pathogen actually increases the resistant expansion rate. If treatment failure occurs
before R < Rbalance then containment is best. On the other hand, if containment causes the
balance threshold to exceed the resistant density before treatment failure then it is possible
that aggressive treatment is better than containment. This will depend, in part, on how
much containment accelerates the increase in Rbalance.

Possibilities C-D: If Pmax > Rbalance(0) > R(0) then sensitive pathogen initially increases
the resistant expansion rate and then, when the resistant density exceeds the balance thresh-
old, decreases the resistant expansion rate. If the effect of competition decreases with PBur
then there will be an increased number of scenarios where aggressive treatment out performs
containment because of the decreases effect of competition.

In summary temporarily elevating the resistant expansion rate may be advantageous if it
will lead to either a stronger immune response or allow low resource levels to be sustained
for extended periods of time.

S9 Text: Alternative ways to model competition

Here we detail the analysis of cost and benefit for two alternative models of competition.

General Lotka-Volterra competition
If we include the possibility that intra-specific and inter-specific competition may differ, then
our original model (Equation (3) from the main text) becomes

Ṙ = (1− cI)rR (1− δRRR− δRS (Pmax −R))− µ(t)R

+εr (Pmax −R) (1− δSRR− δSS(Pmax −R)) , (S.22)

where δRR and δRS are the competition coefficients describing how resistant replication is
suppressed by resistant and sensitive pathogens, respectively. Similarly, δSR and δSS are the
competition coefficients describing how sensitive replication is suppressed by resistant and
sensitive pathogens, respectively. Since the replication rate is non-negative we assume that
δSRPmax < 1, δSSPmax < 1, δRRPmax < 1 and δRSPmax < 1.

We can rewrite Equation (S.22) to separate out the contribution of the sensitive density to
get:

Ṙ = (1− cI)rR (1− δRRR)− µ(t)R︸ ︷︷ ︸
resistant expansion
with no sensitives

− (1− cI)rR (Pmax −R) δRS︸ ︷︷ ︸
benefit of

maximizing sensitives

+ εr(Pmax −R) (1− δSRR− δSS (Pmax −R))︸ ︷︷ ︸
cost of

maximizing sensitives

. (S.23)
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Maximizing the sensitive density will be advantageous whenever the benefit exceeds the cost.
That is, whenever

(1− cI)rR (Pmax −R) δRS > εr(Pmax −R) (1− δSRR− δSS (Pmax −R)) . (S.24)

There are two possibilities:

Possibility 1: (1− cI)δRS − ε(δSS − δSR) > 0
In this case, rearranging Equation (S.24) gives,

R >
εr(1− δSSPmax)

(1− cI)rδRS + εr(δSR − δSS)
.

In other words, the balance threshold for the general Lotka-Volterra competition (Equation
(S.23)) is given by

Rbalance =
εr(1− δSSPmax)

(1− cI)rδRS + εr(δSR − δSS)
.

In this case the equivalent of Equation (5) in the main text is

Pmax >
ε

εδSR + (1− cI)δRS
.

Possibility 2: (1− cI)δRS − ε(δSS − δSR) < 0
In this case, rearranging Equation (S.24) gives,

R <
εr(1− δSSPmax)

(1− cI)rδRS + εr(δSR − δSS)
< 0,

which is never possible and so maximising the sensitive density is never advantageous. If
(1− cI)δRS− ε(δSS− δSR) < 0, then aggressive treatment should be used. Note that this can
occur only if sensitive replication is more strongly impacted by the presence of a sensitive
pathogen than a resistant pathogen (δSS > δSR). Even if δSS > δSR, however, the difference
would have to be substantial

δSS − δSR >
(1− cI)δRS

ε
.

In particular, since 1 ≥ δSS > δSR > 0, this can occur only if ε > (1 − cI)δRS. In this case
the cost of mutational input is so great that it is never advantageous to maintain sensitive
pathogen in the patient.

Gompertz competition
If competition is modelled with a Gompertz function then the expansion of a purely resistant
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infection is described by the following equation (for simplicity assume there are no fitness
costs associated with resistance):

Ṙ = rR log

(
1

δR

)
− µ(t)R. (S.25)

Adding sensitive pathogen to Equation (S.25), the expansion of the resistant density under
containment is described by,

Ṙ = rR log

(
1

δPmax

)
− µ(t)R + εr (Pmax −R) log

(
1

δPmax

)
.

We can rewrite this equation to separate out the contribution of the sensitive density to get:

Ṙ = rR log

(
1

δR

)
− µ(t)R︸ ︷︷ ︸

resistant expansion
with no sensitives

− rR log

(
Pmax
R

)
︸ ︷︷ ︸

benefit of
maximizing sensitives

+ εr(Pmax −R) log

(
1

δPmax

)
︸ ︷︷ ︸

cost of
maximizing sensitives

. (S.26)

Sensitive pathogen will be advantageous whenever the benefit exceeds the cost. In other
words, whenever

rR log

(
Pmax
R

)
> εr(Pmax −R) log

(
1

δPmax

)
. (S.27)

Rearranging Equation (S.27) gives,

R >
εPmax

ε log
(

1
δPmax

)
+ log

(
Pmax
R

) . (S.28)

Note that the resistant density R is present on both sides of Equation (S.28). The right-hand
side of Equation (S.28), however, satisfies

∂

∂R

εPmax

ε log
(

1
δPmax

)
+ log

(
Pmax
R

) =
εPmax

ε log
(

1
δPmax

)
+ log

(
Pmax
R

) 1

R
(
ε log

(
1

δPmax

)
+ log

(
Pmax
R

)) .
Therefore, whenever R = εPmax

ε log[ 1
δPmax

]+log[PmaxR ]
, we have

∂

∂R

εPmax

ε log
[

1
δPmax

]
+ log

[
Pmax
R

] =
1(

ε log
[

1
δPmax

]
+ log

[
Pmax
R

]) < 1.

This means that whenever R = εPmax
ε log[ 1

δPmax
]+log[PmaxR ]

, R will increase more rapidly than

εPmax
ε log[ 1

δPmax
]+log[PmaxR ]

. Hence, once Equation (S.28) holds, it will continue to hold provided

resistance emergence is a threat. This means that once R is sufficiently large the sensitive
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pathogens will be advantageous.

Although this establishes a threshold condition, we can not explicitly write an analytic
expression for the balance threshold. We can, however, provide an upper bound. Namely,
since

εPmax

ε log
(

1
δPmax

)
+ log

(
Pmax
R

) ≤ εPmax
(1− ε) log (Pmax)− ε log (δ)

,

we know that

Rbalance ≤
εPmax

(1− ε) log (Pmax)− ε log (δ)
.

This also means that the balance threshold is guaranteed to be below the acceptable burden
if

Pmax > exp

[
ε

1− ε
(1 + log(δ))

]
.

Note that this is an upper bound and that the acceptable burden does not need to be this
high in order to exclude the possibility shown in Fig. 2 (Panel A) of the main text.

S10 Text: Further complexities

Here we augment our original model (Equation (3) from the main text) to include horizontal
gene transfer and derive the balance threshold for this new model. We will also consider the
possibility that the immune response inhibits pathogen function instead of actively clearing
pathogen from the patient and briefly discuss the possibility that the phenotype of drug-
resistance occurs on a continuum.

Horizontal gene transfer: One possible disadvantage of maintaining sensitive pathogen
in the patient is that these pathogens could acquire resistance genes. These resistance genes
could be acquired from either the existing resistant population or possibly the patient’s mi-
crobiota.

We begin by considering resistant gene transfer from the resistant population to the sensitive
population. We consider two possibilities. The first is that the rate of gene transfer is density
dependent. In this case we model the rate of transfer of resistant genes from the resistant
pathogen population to the sensitive population as εHDR(t)(P (t) − R(t)). The other pos-
sibility is that gene transfer is not density dependent. In this case, we model the transfer
rate of resistant genes from the resistant pathogen population to the sensitive population as
εHND

R(t)
P (t)

(P (t)−R(t)).

Similarily, for gene transfer from the microbiota to sensitive pathogen, we will use

δHDBR(t)(P (t)−R(t))
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for the density dependent rate and δHND
BR(t)
B(t)

(P (t)−R(t)) for the density independent rate.

Here, B(t) is some relevant measure of total microbiota density. Similarly, BR(t) is some
relevant measure of resistant microbiota density.

Computing the new balance threshold: With these additional terms, the expansion of
the resistant population under containment is now defined by,

Ṙ(t) = (1− cI) r (1− (1 + cC)δPmax)R(t)− µ(t)R(t)

+εr (1− δPmax) (Pmax −R(t))

+εHDR(t)(Pmax −R(t)) + εHND
R(t)

Pmax
(Pmax −R(t))

+δHDBR(t)(Pmax −R(t)) + δHND
BR(t)

B(t)
(Pmax −R(t)). (S.29)

Depending on the assumptions about horizontal gene transfer some of the constants εHD,
εHND, δHD, δHND may be zero. For example, if horizontal gene transfer between the resistant
and sensitive pathogen is density dependent then εHD > 0 and εHND = 0. We will continue
to carry all of the terms to maintain full generality.

Equation (S.29) can be written as the sum of three parts. The first part is the resistant
expansion rate in the absence of sensitive pathogen, the second part is the benefit of sensitive
pathogen and the third part is the cost of sensitive pathogen:

Ṙ(t) = (1− cI) r (1− (1 + cC)δR(t))R(t)− µ(t)R(t)︸ ︷︷ ︸
no sensitive pathogen

− (1− cI) r(1 + cC)δR(t)(Pmax −R(t))︸ ︷︷ ︸
benefit of sensitive pathogen

+

[
εr (1− δPmax) + εHDR(t) + εHND

R(t)

Pmax
+ δHDBR(t) + δHND

BR(t)

B(t)

]
(Pmax −R(t))︸ ︷︷ ︸

cost of sensitive pathogen

.

In order for the instantaneous effect of sensitive pathogen to be positive, sensitive pathogen
must decrease the resistant expansion rate. A comparison of cost and benefit tells us that
the benefit will exceed the cost whenever,

R(t)

[
(1− cI)r(1 + cC)δ − εHD −

εHND
Pmax

]
> εr (1− δPmax) + δHDBR(t) + δHND

BR(t)

B(t)
.

The right-hand side of the above inequality is always positive. This means that if the left-
hand side is negative then sensitive pathogen is detrimental. In other words, if[

(1− cI)r(1 + cC)δ − εHD −
εHND
Pmax

]
< 0

then the instantaneous effect of sensitive pathogen is detrimental. This will occur whenever
the rate of horizontal gene transfer from the resistant population exceeds the benefit of com-
petitive suppression due to sensitive pathogen.
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If [
(1− cI)r(1 + cC)δ − εHD −

εHND
Pmax

]
(S.31)

is always negative then the cost of gene transfer from the resistant pathogen population
always outweighs the benefit of competitive suppression. In this case, sensitive pathogen is
always detrimental and aggressive treatment should be used.

On the other hand, if expression (S.31) is always positive then the benefit of sensitive
pathogen always outweighs the cost of gene transfer from the resistant pathogen popula-
tion. In this case, we still need to consider the effect of gene transfer from the microbiota
and also the effect of mutational input, before we can determine if sensitive pathogen is
advantageous. We do this by examining the balance threshold:

Rbalance =
εr (1− δPmax) + δHDBR(t) + δHND

BR(t)
B(t)[

(1− cI)r(1 + cC)δ − εHD − εHND
Pmax

] . (S.32)

Whenever the resistant density exceeds the balance threshold the instantaneous effect of
the sensitive density is advantageous. Whenever the resistant density is below the balance
threshold this instantaneous effect is detrimental. Because the balance threshold depends
on the density of microbiota (B(t) and BR(t)) it may change as the infection progresses.
We now make some simplifying assumptions about the microbiota in order to continue this
analysis.

First, we assume that if a narrow spectrum antibiotic is used then B(t) and BR(t) are con-
stant during the infection. In this case the balance threshold (Equation (S.32)) is constant
and sensitive pathogen will be advantageous whenever the resistant density is large enough.
That is, the cases described in Fig. 2 of the main text characterise the different possibilities.

Second, we assume that if a broad spectrum antibiotic is used then B(t) will decrease and
BR(t) will increase. In particular, if we assume that B(t) is monotonically decreasing and
BR(t) is monotonically increasing during treatment, then the balance threshold will increase
during the management period. In particular, this means that the resistant density may
exceed the balance threshold at one time during the infection and then later be below the
balance threshold even though the resistant density is increasing the entire time. In other
words, the scenarios depicted in Fig. 2 of the main text do not cover all possible scenarios.

These assumptions, do however allow us to make some general observations about the use
of broad spectrum antibiotics. First, if aggressive treatment is best when a narrow spec-
trum drug is used (i.e., B(t) and BR(t) are constant) then it will also be best when a broad
spectrum drug is used. This is because, in this model, the only effect of choosing a broad-
spectrum drug over a narrow spectrum drug is that it increases the cost of horizontal gene
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transfer. Conversely, if containment is better than aggressive when a narrow spectrum is
used, aggressive treatment may still be better if a broad spectrum antibiotic is used. Finally,
all else being equal, a narrow spectrum drug will always delay resistance emergence at least
as long as a broad spectrum drug.

Modifications to immune response: To this point we have assumed that immunity in-
creases pathogen clearance. Here we consider the possibility that instead of increasing the
rate of pathogen clearance, immunity acts to impair pathogen function. We will assume that
this type of immunity is an increasing function of time and model it by assuming that either
the intrinsic replication rate r or the competition coefficient δ decrease with time. Note that,
since the intrinsic replication rate and competition coefficient of the resistant pathogen are
defined relative to r and δ, this type of immune response will affect both drug-sensitive and
drug-resistant pathogens.

Under this assumption, the term representing the benefit of competitive suppression (i.e.,
the first term in expression (S.31)) will change as the infection progresses. If immunity
only inhibits a pathogen’s ability to compete then the first term in expression (S.31) will
increase with time. This means that expression (S.31) could be negative at the start of the
management period but eventually become positive. This indicates that initially, when the
immune response is low the benefit of competitive suppression is not enough to outweigh the
cost of gene transfer from the resistant population. As the immune response increases and
strengthens competitive suppression this will change. Therefore, even if expression (S.31) is
initially negative, containment may still be better than aggressive treatment. Now consider
the effect of immunity on the balance threshold:

∂

∂δ
Rbalance =

− [εrPmax +Rbalance(1− cI)r(1 + cC)][
(1− cI)r(1 + cC)δ − εHD − εHND

Pmax

] < 0.

Therefore if immunity causes δ to increase then the balance threshold will decrease during
the infection. This will increase the number of scenarios where containment is better than
aggressive treatment.

Finally, consider the case where immunity reduces the intrinsic replicative ability. In this case
the first term in expression (S.31) will decrease with time. This means that expression (S.31)
could be positive at the start of the management period but eventually become negative.
If immunity acts to decrease the intrinsic replicative ability, this will increase the number
of scenarios where aggressive treatment is better than containment. Now consider how
increasing immunity will change the balance threshold:

∂

∂r
Rbalance =

[ε (1− δPmax)−Rbalance(1− cI)(1 + cC)δ][
(1− cI)r(1 + cC)δ − εHD − εHND

Pmax

] < 0,

where the last inequality is due to the fact that ε(1−δPmax
(1−cI)(1+cC)δ

< Rbalance. Therefore if im-
munity causes r to decrease then the balance threshold will increase during the infection –
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increasing the number of scenarios where containment is better than aggressive treatment.
Note that this is only true when there is horizontal gene transfer. If there is no horizontal
gene transfer the balance threshold does not depend on r (see Equation 4 in main text). In
this case, this type of immunity will not impact the results in the main text.

In summary, if the immune response inhibits pathogen function rather than simply killing
pathogens, then it matters how this inhibition occurs. If the effect augments the benefit of
competitive suppression then sensitive pathogen is more likely to be advantageous. If the
effect reduces the benefit of competitive suppression (by reducing the intrinsic replicative
ability) then sensitive pathogen is less likely to be advantageous. These relationships are
similar to those discussed in Fig. 4 of the main text (see S12 Text for details).

Modeling drug-resistance as a continuous phenotype: A major assumption in all
of our models is that pathogens are either completely drug-sensitive or completely drug-
resistant. Here we provide some general comments of how our analysis could be adjusted to
accommodate the possibility that pathogens exhibit an entire range of drug sensitivities.

First we assume that the main clinical concern are pathogens that are completely drug
resistant. In other words, we assume that – by adjusting drug concentrations – we are able to
control any pathogen that exhibits at least partial drug-sensitivity. Under these assumptions
we can still model the total pathogen density as the combination of the drug-resistant density
R and the drug-sensitive density P − R. But now, the drug sensitive density also includes
pathogens with only partial drug-sensitivity. The important difference between this model
and the one used in the main text is that, now the characteristics of the drug sensitive density
will change through-out the infection. Since we are interested in understanding how these
changes impact the analysis, we rewrite Equation (3) from the main text using the resistant
characteristics as the reference:

Ṙ = rR(1− δR)− µ(t)R

− rRδ(Pmax −R)︸ ︷︷ ︸
benefit

of maximizing
sensitive density

+ ε(1 + bI)r (1− (1− bC)δPmax) (Pmax −R)︸ ︷︷ ︸
cost

of maximizing
sensitive density

, (S.33)

where the intrinsic replication rate of sensitive pathogens is a factor (1+bI) greater than that
of drug resistant pathogens and drug sensitive pathogens are a factor (1− bC) less sensitive
to competition than drug-resistant pathogens. With this notation the balance threshold
becomes

Rbalance =
ε (1 + bI)

δ
(1− (1− bC)δPmax) .

Now, if we assume that exposure to drug causes the average characteristics of the drug
sensitive population to become more like the characteristics of the drug resistant population
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then, as the infection progresses, we would expect bI and bC to decrease to zero. Decreasing
bI and bC will cause Rbalance to decrease. Therefore, if the only changes to the sensitive
population are decreases in bI and bC then accounting for the possibility that there is a
range of drug-sensitivities will increase the number of scenarios where containment is better
than aggressive treatment. It is likely, however, that as the sensitive population becomes
more like the resistant population the probability of mutation to full resistance will increase.
Increasing ε has the opposite effect on the balance threshold. If the change in epsilon trumps
the change in bI and bC then we would expect aggressive treatment to be better in a wider
range of scenarios. This case also suggests the possible utility of using a delayed aggressive
strategy – namely following containment until the probability of mutation becomes too large
and then switching to aggressive treatment. A proper understanding of this situation requires
a separate analysis.

S11 Text: Containment can be effective even if the total

pathogen density is below the acceptable burden

If containment is better than aggressive treatment then it is highly desirable to keep the
pathogen density at the acceptable burden. Gains will accrue, however, even if treatment
does not perfectly achieve this target. In particular, for the dynamics described by Equation
(3) of the main text, sensitive pathogen will be advantageous whenever R(t) > ε(1−δP (t))

(1−cI)(1+cC)
.

In other words, whenever

P (t) ∈ [
1

δ
− (1− cI)(1 + cC)R(t)

ε
, Pmax].

Since 1
δ
− (1−cI)(1+cC)R(t)

ε
decreases as the resistant density increases, this range expands as

the resistant density increases, so that as the infection progresses, the total pathogen density
can be lower and gains will still accrue. Thus, from a practical perspective, it is not necessary
to keep the total cell population at precisely the allowable burden. This will make successful
implementation of containment easier.

S12 Text: Supporting calculations for Fig 4 of main text

Let RA denote the resistant density under aggressive treatment. Because we assume that ag-
gressive treatment immediately removes the entire drug-sensitive population, the expansion
of the resistant density under aggressive treatment is described by

ṘA = (1− cI)rRA(1− (1 + cC)δRA)− µRA. (S.34)
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Let RC denote the resistant density under containment. Under containment the expansion
of the resistant density is described by

ṘC = (1− cI)rRC(1− (1 + cC)δRC)− µ(t)RC

− (1− cI)rRC(1 + cC)δ(Pmax −RC)︸ ︷︷ ︸
Benefit

+ εr (1− δPmax) (Pmax −RC)︸ ︷︷ ︸
Cost

. (S.35)

Amplifying competition for both resistant and sensitive pathogens: An alternative
intervention that amplifies the effect of competition equally for both drug-sensitive and drug-
resistant pathogens will increase the competition coefficient δ. The derivatives of cost and
benefit with respect to δ are:

∂Cost

∂δ
= −εrPmax (Pmax −RC) < 0

and
∂Benefit

∂δ
= (1− cI)rRC(1 + cC)(Pmax −RC) > 0.

Therefore, increasing δ will increase the benefit and reduce the cost of sensitive pathogen.

The derivative of the resistant expansion rate with respect to δ under containment is:

∂ṘC

∂δ
= −(1− cI)rRC(1 + cC)Pmax − εrPmax (Pmax −RC) < 0,

and under aggressive treatment is

∂ṘA

∂δ
= −(1− cI)rRA(1 + cC)RA < 0.

Therefore, increasing δ reduces the expansion rate of the resistant population and thus ex-
tends the amount of time that the infection can be managed with both containment and
aggressive treatment.

Finally,
∂Rbalance

∂δ
=

−ε
(1− cI)(1 + cC)δ2

< 0,

and so increasing δ will decrease the balance threshold.

Amplifying competition for only resistant pathogens: An alternative intervention
that amplifies the effect of competition for only drug-resistant pathogens will increase the
competitive fitness cost cC . The derivatives of cost and benefit with respect to cC are:

∂Cost

∂cC
= 0
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and
∂Benefit

∂cC
= (1− cI)rRCδ(Pmax −RC) > 0.

Therefore, increasing cC will increase the benefit and have no effect on the cost of sensitive
pathogen.

The derivative of the resistant expansion rate with respect to cC under containment is:

∂ṘC

∂cC
= −(1− cI)rRCδPmax < 0

and under aggressive treatment is

∂ṘA

∂cC
= −(1− cI)rRAδRA < 0.

Therefore, increasing cC reduces the expansion rate of the resistant population and thus
extends the amount of time that the infection can be managed with either containment or
aggressive treatment.

Finally,
∂Rbalance

∂cC
=
−Rbalance

(1 + cC)
< 0,

and so increasing cC will decrease the balance threshold.

Amplifying competition for sensitive pathogens only: Assessing the impact of this
intervention requires a modification of Equation (S.34) and Equation (S.35). Note that
Equation (S.34) and Equation (S.35) can be written in terms of fitness benefits associated
with drug sensitivity instead of fitness costs associated with drug resistance. Doing this
yields,

ṘA = rRA(1− δRA)− µRA, (S.36)

and

ṘC = rRC(1− δRC)− µ(t)RC

− rRCδ(Pmax −RC)︸ ︷︷ ︸
benefit

of maximizing
sensitive density

+ ε(1 + bI)r (1− (1− bC)δPmax) (Pmax −RC)︸ ︷︷ ︸
cost

of maximizing
sensitive density

, (S.37)

where the intrinsic replication rate of sensitive pathogens is a factor (1 + bI) greater than
that of drug resistant pathogens and drug sensitive pathogens are a factor (1− bC) less sen-
sitive to competition than drug-resistant pathogens.
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An alternative intervention that amplifies the effect of competition for only drug-sensitive
pathogens will decrease the competitive fitness benefit bC . The derivatives of cost and benefit
with respect to bC are:

∂Cost

∂bC
= ε(1 + bI)rδPmax (Pmax −RC) > 0

and
∂Benefit

∂bC
= 0.

Therefore, decreasing bC will decrease the cost and have no effect on the benefit of sensitive
pathogen.

The derivative of the resistant expansion rate with respect to bC under containment is:

∂ṘC

∂bC
= ε(1 + bI)rδPmax (Pmax −RC) > 0

and under aggressive treatment is
∂ṘA

∂bC
= 0.

Therefore, under containment, decreasing bC reduces the expansion rate of the resistant
population and thus extends the amount of time that the infection can be managed. Under
aggressive treatment, decreasing bC has no effect on the resistant expansion rate.
Finally, if the balance threshold is written in terms of fitness benefits then

Rbalance =
ε(1 + bI)

δ
[1− (1− bC)δPmax]

and so
∂Rbalance

∂bC
=
ε(1 + bI)

δ
δPmax > 0.

Therefore, decreasing bC will decrease the balance threshold.

Now we consider alternative interventions which change the pathogens’ intrinsic ability to
replicate.

Reducing intrinsic replication for both resistant and sensitive pathogens: An
alternative intervention that reduces intrinsic replication equally for both drug-sensitive and
drug-resistant pathogens will decrease r. The derivatives of cost and benefit with respect to
r are:
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∂Cost

∂r
= ε (1− δPmax) (Pmax −RC) > 0

and
∂Benefit

∂r
= (1− cI)RC(1 + cC)δ(Pmax −RC) > 0.

Therefore, decreasing r will decrease both the cost and the benefit of sensitive pathogen.

The derivative of the resistant expansion rate with respect to δ under containment is:

∂ṘC

∂r
= (1− cI)RC(1− (1 + cC)δPmax) + ε (1− δPmax) (Pmax −RC) > 0,

and under aggressive treatment is

∂ṘA

∂r
= (1− cI)RA(1− (1 + cC)δRA) > 0.

Therefore, decreasing r reduces the expansion rate of the resistant population and thus
extends the amount of time that the infection can be managed with both containment and
aggressive treatment.
Finally,

∂Rbalance

∂r
= 0,

and so decreasing r has no effect on the balance threshold.

Reducing intrinsic replication for resistant pathogens only: An alternative interven-
tion that reduces the intrinsic replication of only the drug-resistant pathogen will increase
the intrinsic fitness cost cI . The derivatives of cost and benefit with respect to cI are:

∂Cost

∂cI
= 0

and
∂Benefit

∂cI
= −rRC(1 + cC)δ(Pmax −RC) < 0.

Therefore, increasing cI will decrease the benefit and have no effect on the cost of sensitive
pathogen.

The derivative of the resistant expansion rate with respect to cI under containment is:

∂ṘC

∂cI
= −rRC(1− (1 + cC)δPmax) < 0

and under aggressive treatment is

∂ṘA

∂cI
= −rRA(1− (1 + cC)δRA) < 0.
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Therefore, increasing cI reduces the expansion rate of the resistant population and thus
extends the amount of time that the infection can be managed with either containment or
aggressive treatment.

Finally,
∂Rbalance

∂cI
=
Rbalance

(1− cI)
> 0,

and so increasing cI will increase the balance threshold.

Reducing intrinsic replication for sensitive pathogens only: An alternative interven-
tion that reduces the intrinsic replication of only the drug-sensitive pathogens will decrease
the fitness benefit bI . From Equation (S.37), the derivatives of cost and benefit with respect
to bI are:

∂Cost

∂bI
= εr (1− (1− bC)δPmax) (Pmax −RC) > 0

and
∂Benefit

∂bI
= 0.

Therefore, decreasing bI will decrease the cost and have no effect on the benefit of sensitive
pathogens.

The derivative of the resistant expansion rate with respect to bI under containment is:

∂ṘC

∂bI
= εr (1− (1− bC)δPmax) (Pmax −RC) > 0

and under aggressive treatment is
∂ṘA

∂bI
= 0.

Therefore, under containment, decreasing bI reduces the expansion rate of the resistant pop-
ulation and thus extends the amount of time that the infection can be managed. Under
aggressive treatment, decreasing bI has no effect on the resistant expansion rate.

Finally, if the balance threshold is written in terms of fitness benefits then

Rbalance =
ε(1 + bI)

δ
[1− (1− bC)δPmax]

and so
∂Rbalance

∂bI
=
Rbalance

(1 + bI)
> 0.

Therefore, decreasing bI will decrease the balance threshold.
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