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Abstract

Metapopulation dynamics can strongly affect the ecological and evolutionary processes

involved in host–parasite interactions. Here, I analyse a deterministic host–parasite

coevolutionary model and derive analytic approximations for the level of local adaptation

as a function of (1) host migration rate, (2) parasite migration rate, (3) parasite specificity

and (4) parasite virulence. This analysis confirms the results of previous simulation

studies: the difference between host and parasite migration rates may explain the level of

local adaptation of both species. I also show that both higher specificity and higher

virulence generally lead to higher levels of local adaptation of the species which is already

ahead in the coevolutionary arms race. The present analysis also provides a simple

geometric interpretation for local adaptation which captures the complexity of the

temporal dynamics of host–parasite coevolution.

Keywords

Coevolution, migration, metapopulation, virulence, local adaptation.

Ecology Letters (2002) 5: 246–256

I N T R O D U C T I O N

In coevolutionary host–parasite systems each species may

constitute an ever changing environment to which its

opponent has to adapt. Such coevolutionary processes have

been extensively studied at the scale of the population

(Hamilton 1980, 1993; Nee 1989; Haraguchi & Sasaki 1996;

Sasaki 2000) but interspecific coevolution may also take

place at a larger spatial scale involving several populations

connected by gene flow (a geographical mosaic of coevo-

lution; Thompson 1994, 1999). The recognition of the role

of spatial structure in coevolutionary interactions led to

several empirical (Parker 1985; Lively 1989; see review by

Kaltz & Shykoff 1998) and theoretical (Frank 1991a, 1991b,

1997; Judson 1995; Gandon et al. 1996; Morand et al. 1996;

Lively 1999; Gomulkiewicz et al. 2000; Nuismer et al. 2000)

studies of the emerging pattern of adaptation. It is

conventional wisdom that parasites have greater evolution-

ary potential than their hosts since they often have larger

population sizes and shorter generation times. As a

consequence, parasites may have an evolutionary advantage

and are expected to be adapted to their sympatric hosts.

Several experiments support this view. Indeed, most

transplant experiments have shown that parasites perform

better on sympatric than on allopatric hosts (Parker 1985;

Lively 1989; Ebert 1994; Manning et al. 1995; Morand et al.

1996; Lively & Dybdhal 2000). However, other experiments

did not find any evidence of parasite local adaptation

(Morand et al. 1996; Dufva 1996; Mutikainen et al. 2000) or

even found local maladaptation of the parasite (Imhoof &

Schmid-Hempel 1998; Kaltz et al. 1999; Oppliger et al.

1999). These results suggest that the parasite might not

always be ahead in the coevolutionary arms race.

Using a simulation model of host–parasite coevolution,

Gandon et al. (1996, 1998) showed that the ratio of host to

parasite migration rates strongly affected the pattern of local

adaptation. For intermediate or low migration rates, if

parasites (or hosts) migrate more than hosts (or parasites),

parasites (or hosts) are locally adapted. In contrast, if the

species have similar or high migration rates, there is no

differential response (i.e. equal performance in sympatry or

allopatry). These predictions have been tested in different

biological systems through comparison of the level of local

adaptation (obtained by transplant experiments) and host

and parasite migration rates (inferred from the analysis of

genetic structure in host and parasite populations). As

expected from the theory, these comparisons revealed a

relatively high migration rate (compared to host migration

rates) of locally adapted parasites (Dybdhal & Lively 1996;

Davies et al. 1999) and a relatively low migration rate of

locally maladapted parasites (Kaltz et al. 1999; Delmotte

et al. 1999).
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This consistency between theoretical predictions and

empirical results is encouraging. However, the theory

underlying these predictions is far from satisfactory

because it is almost exclusively based on simulation

studies. Simulations are useful for exploring the effects

of some parameters (e.g. host and parasite migration rates),

but they fail to provide a general understanding of the

processes involved in the emergence of local adaptation.

The mosaic theory of coevolution (Thompson 1999)

requires a more formal basis and the precise aim of this

paper is to provide a first step in this direction. Using a

slightly modified version of Nee’s model of antagonistic

coevolution (Nee 1989), I present a simplified determin-

istic metapopulation model of host–parasite coevolution.

This yields analytical approximations of the level of local

adaptation as a function of (1) host migration, (2) parasite

migration, (3) parasite specificity and (4) parasite virulence

(deleterious effect on host fitness). The analysis of this

model also yields a geometric presentation of this measure

of local adaptation. A geometrical view has heuristic value

because it captures most of the complexity involved in

these dynamical systems and, in particular, the effects of

host and parasite migration rates on adaptation.

THE MODEL

Life cycle

I will assume that both the host and the parasite are

haploid, reproduce asexually, and have constant and very

large population sizes (such that the effect of genetic drift

on the dynamics of gene frequencies is assumed to be

negligible). The genetic determinism of host resistance (or

parasite infectivity) is governed by a single locus, H (P for

the parasite) and two alleles, H1/H2 (P1/P2 for the

parasite). The interaction follows the assumptions of a

modified Matching Allele Model (Nee 1989; Frank 1991a,

b, 1994; Gandon et al. 1996). A host H1 confers resistance

against a parasite P2 (such that infection occurs with a

probability 1 – S) but is fully susceptible to a parasite P1

(for the host H2, replace the subscript 1 by 2, and vice

versa). The parameter S refers to parasite specificity. When

S ¼ 0, there is no specificity and each host type is equally

susceptible to both parasite types. When S ¼ 1, a given

type of parasite can only infect one type of host, and we

recover the classical Matching Allele Model. Parasite

virulence, V, measures the deleterious effect of parasites

on infected hosts. At the scale of the metapopulation, I

further assume that the habitat consists of a very large

number, n, of populations and that host and parasite

migration rates (mH and mP, respectively) are independent

and do not vary with the distance between populations

(island model of dispersal).

Local adaptation

By definition, the level of local adaptation, Ds, of the species

s (where s ¼ host or parasite) refers to the difference

between (1) the performance in the population of origin,

Ps[home], and (2) the performance in a remote population,

Ps[away]:

DS � PS ½home� ÿ PS ½away� ð1Þ
If host performance is measured as the probability of

resistance and parasite performance as the probability of

infection, then the level of host adaptation is equal to the

opposite of the parasite’s level of local adaptation. In the

following, I drop the subscripts of these variables and only

focus on the analysis of parasite local adaptation, referring

to it as D ” P[home] – P[away] ¼ Dparasite. The first meas-

ure of parasite performance, P[home], depends on the local

dynamics of gene frequencies of both species. The second,

P[away], is the performance of a parasite from a given

population that is placed in a randomly chosen population

among the n – 1 remaining ones. This second measure is an

average of the performance over these n – 1 populations.

The pattern of adaptation will strongly depend on the

distribution of the genetic variability for resistance and

infectivity within and among populations. Indeed, a prere-

quisite for local adaptation is the occurrence of genetic

differentiation among both host and parasite populations

(Gandon et al. 1998). Two very different situations may lead

to such distribution of genetic diversity. First, each

population may fix different alleles. This would lead to

differentiation among populations and, consequently, to

host or parasite local adaptation. This situation is, however,

very unlikely if some migration occurs between populations.

Migration can reintroduce alleles that have gone extinct at a

particular location and, because of negative frequency-

dependence, these alleles will increase in frequency and

restore polymorphism.

A second situation may arise in which all populations are

polymorphic but vary in their allele frequencies. This may

lead to complicated dynamics, with allele frequencies that

vary both over space and time. Classically, these dynamics

have been analysed through computer simulations (Frank

1991a, b, 1997; Gandon et al. 1996; Lively 1999). However,

the ergodic property of these coevolutionary systems may

yield convenient simplifications. Indeed, using a similar

coevolutionary model, Frank (1991b) showed that the

pattern of variation of genotype frequencies over several

populations (across space) at a particular point in time is

equivalent to the pattern emerging over several generations

for a single population (across time). In the present model,

the negative frequency-dependent dynamics of these models

and the symmetry of the fitness functions ensure that the

expected frequencies (over time) of host and parasite alleles
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in a given population are equal to ½. The expected gene

frequencies among host and parasite immigrants are also

equal to ½ since immigrants are randomly sampled over the

whole metapopulation (expected gene frequency over

space). This yields the following recurrence equations for

changes in gene frequencies in both species (Appendix A):

xtþ1 ¼
ð1ÿ mH Þð2xtð1ÿV Þ þ SV ðxt ÿ ytÞÞ

2ð1ÿV Þ þ SV ð1ÿ 4xt ytÞ

ytþ1 ¼
ð1ÿ mPÞð2yt þ S ðxt ÿ ytÞÞ

2ÿ S ð1ÿ 4xt ytÞ

ð2Þ

where x is the departure of the frequency of host H1 from

½, such that x is positive when there is an excess of host

H1. y has a similar interpretation for the parasite population.

The subscripts t and t + 1 refer to the values of x and y at

two successive generations.

MODEL ANALYSIS

Local stability analysis

The point x ¼ y ¼ 0 represents a trivial equilibrium of

eqns 2. The analysis of the local stability of this point yields

the following condition for stability (Appendix B):

ð1ÿ mH Þð1ÿ mPÞ <
ð2ÿV ð2ÿ S ÞÞð2ÿ SÞ

ð2ÿV ð2ÿ SÞÞð2ÿ S Þ þVS 2
ð3Þ

Consequently, when migration rates are above some

threshold values (m�H for the host and m�P for the parasite,

see Appendix B), the above equilibrium is stable. Note that

these threshold values increase with both parasite virulence

and parasite specificity (see Fig. 1).

The above analysis of the stability condition is particularly

relevant for the study of local adaptation. Indeed, in the

absence of temporal variation in gene frequencies (limit

cycles), all the populations have the same gene frequencies.

The absence of genetic differentiation among populations

implies that there is no spatial variation of the environment

of the species and, consequently, no local adaptation. Note,

however, that the absence of local adaptation does not imply

maladaptation (maladaptation also requires some genetic

differentiation among populations). In other words, local

adaptation (or maladaptation) may only occur below the

threshold values of host and parasite migration rates. In the

following, I will focus on the analysis of the dynamics of

gene frequencies in this region of the parameter space.

Local dynamics of gene frequencies

Numerical simulations using the recurrence eqns 2 show

that when condition 3 is not met, the gene frequencies in

each species oscillate and converge rapidly towards a stable

limit cycle. Following Nee (1989), it is possible to derive an

approximate solution for such dynamics. The linearization

of system 2 (provided in Appendix B) yields the following

solutions for the variations of gene frequencies:

xt ¼ A sinðhtÞ
yt ¼ B sinðht þ /Þ

ð4Þ

A and B refer to the amplitude of gene frequency oscillations

in host and parasite populations, respectively. h determines

the period of the oscillations and / is the phase difference

between the parasite and its host. The phase difference

depends on host and parasite migration rates, on parasite

specificity and on parasite virulence (see Appendix C):

/¼arccos

� mPÿmH

2S
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V ð1ÿmPÞð1ÿmH Þ=ðð2ÿSÞð2ð1ÿV ÞþSV ÞÞ

p !
ð5Þ

When host and parasite migration rates are equal, / ¼ p / 2.

When the parasite migration rate is higher than the host

migration rate, / < p / 2 and, finally, when the parasite

migration rate is lower than the host migration rate, / >

p / 2. These results have heuristic value since the length of

the lag measures the speed at which the parasite tracks the

evolutionary changes of its host. When / ¼ p / 2, the

parasite tracks a new host type precisely when it becomes

0 0.2 0.4 0.6
mP

0

0.2

0.4

0.6

mH
V = 1

0.8

0.6

0.4

0.2

Figure 1 Effects of host migration rate, mH, parasite migration

rate, mP, and parasite virulence, V, on the local stability of the

equilibrium {x ¼ 0, y ¼ 0}. The black area indicates the parameter

space where the equilibrium is always locally stable. In the white

area, this equilibrium is locally unstable under the curve which

indicates the threshold values of host and parasite migration rates

(see eqns B3). These threshold values decrease with parasite viru-

lence, as indicated on the figure for five different levels of parasite

virulence (V ¼ 1, 0.8, 0.6, 0.4, 0.2 and S ¼ 1). Parasite specificity

has very similar effects to parasite virulence (not shown).
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the most common host. In other words, the evolutionary

dynamics are governed by negative frequency-dependence.

This occurs whenever the migration rates of the coevolving

species are equal. When there is a bias in migration rates,

however, the evolutionary dynamics result from a balance

between the effects of negative frequency-dependence

(leading towards / ¼ p / 2) and the perturbations induced

by biased migration rates. The gene frequency of the species

with the higher rate of migration will return to the equi-

frequency point sooner. For instance, a higher rate of

migration will allow the parasite to track a new host type

before it actually becomes the most common (i.e. when /
< p / 2). The sign of d, the departure of the phase

difference from p / 2 (d ” p / 2 – /), depends only on the

difference between host and parasite migration rates. In

particular, the sign of d is independent of parasite virulence

and parasite specificity. However, a drop in either virulence

or specificity decreases the absolute value of d. This effect,

again, can be explained by the balance between the effects

of negative frequency-dependent selection and migration.

When virulence and/or specificity decrease, the strength of

selection is reduced and the effects of biased migration

dominate, yielding higher absolute values of d.

Note that when either parasite virulence or parasite

specificity becomes very low, the approximation of the

phase difference given by eqn 5 fails. Indeed, in the extreme

cases where V ¼ 0 (S ¼ 0), the polymorphism in the host

(parasite) population becomes neutral, which prevents the

occurrence of stable limit cycles (see also condition 3 and

Fig. 1).

A GEOMETRICAL VIEW OF LOCAL ADAPTATION

Local adaptation approximation

The above analysis can now be used to study the effects of

migration rates and parasite virulence on the level of local

adaptation. The derivation of parasite local adaptation

requires a measure of parasite performance in the population

of origin, which is easily derived from the local gene

frequencies: P[home] ¼ 2Sxt yt + 1 – S / 2. It also requires

a measure of parasite performance in a remote population. As

explained above, because of the negative frequency-depend-

ence of the model, the expected allele frequencies at the scale

of the metapopulation are all equal to ½ (i.e. �xx ¼ �yy ¼ 0). This

yields P[away] ¼ 1 – S / 2 , and, using eqn 1:

Dt ¼ 2Sxt yt ð6Þ
where Dt is the level of parasite local adaptation for a focal

parasite population at time t. This expression of parasite

local adaptation will oscillate across time. In particular, the

sign of �DDt depends on the signs of xt and yt. When they

have the same (different) sign(s) the parasite is locally

adapted (maladapted). Averaging this measure of local

adaptation over several generations, �DD, or over several

populations, �DDt, will give similar results if the dynamics of

the different populations are not synchronized (Frank

1991b). Such an average measure is particularly relevant

because it refers to a general property of the metapopu-

lation (Dt only refers to local adaptation at a particular

point in space and time). An analytic expression of �DD can

be derived from the approximation of the local dynamics

of gene frequencies:

�DD ¼ 2S
AB

2p

Z2p
0

ðsinðhtÞ sinðht þ /Þdt ¼ SAB cosð/Þ ð7Þ

Combining eqns 5 and 7 yields:

�DD¼AB
mPÿmH

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V ð1ÿmPÞð1ÿmH Þ=ðð2ÿS Þð2ð1ÿV ÞþSV ÞÞ

p
ð8Þ

Therefore, �DD depends on the amplitude of the oscillations

over time, as well as the phase difference between the

evolutionary dynamics of the host and the parasite. The

amplitude of the oscillations will only affect quantitatively

the level of local adaptation. The phase difference, however,

may affect the results qualitatively. In other words, whether

host or parasites are locally adapted depends only on the

phase difference between host and parasite gene frequencies

oscillations.

Equation 8 tells us that the average level of local

adaptation of the parasite �DD has the same sign as mP – mH .

In other words, parasites are locally adapted when they

migrate more than their hosts. Here, we recover the results

obtained previously by Gandon et al. (1996) in a complica-

ted stochastic simulation model.

This result has a useful geometrical interpretation. The

oscillations of host and parasite types (see recurrence eqn 4)

follow a limit cycle, which has an elliptical shape in the

phase space. Figure 2 shows how host and parasite

migration rates may distort the shape of this limit cycle

through their effects on the phase difference. For example,

when the parasites migrate more than the hosts, the shape

of the limit cycle is modified so that most of the surface of

the limit cycle lies in the first and third quadrants of the

phase space. This yields an increase in the average level of

parasite local adaptation. Analogous results were obtained

by Nee (1989; p. 517) on mutation rates.

Equation 8 also shows that a drop in parasite virulence

increases the absolute value of local adaptation. Lower

virulence decreases the strength of negative frequency-

dependent selection and, consequently increases the abso-

lute value of d (which could be viewed as a measure of the

relative speed of the two species involved in the coevolu-
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tionary race). Parasite specificity has a similar effect on d
(see eqn 5), but specificity has also a more direct effect on

the measure of local adaptation (see eqn 6). In particular,

when specificity is very low, any genetic differentiation

among populations becomes undetectable and the absolute

level of local adaptation drops. Ultimately, these two effects

cancel out and specificity has only little effect on local

adaptation.

But the above analysis ignores the potential effects of

migration, virulence and specificity on local adaptation via

the amplitude of gene frequency oscillations, A and B. I was

unable to derive analytic expressions for these amplitudes

but numerical simulations revealed that both values were

always a decreasing function of migration rates. Combining

this effect with the fact that the amplitude of the oscillations

is equal to zero above some migration threshold value (see

Appendix B and equation 3), I approximated the product of

the amplitudes of gene frequency oscillations by the

following quantity:

AB ¼ 1ÿ mH

m�
H

� �
1ÿ mP

m�
P

� �
if mP<m�P and mH < m�H

0 if mP > m�P or mH > m�H

(
ð9Þ

The above expression ensures that oscillation amplitudes are

maximized when there is no migration and that gene

frequencies do not oscillate if host and/or parasite

migration rates are above the threshold value specified in

Appendix B.

Simulations

I checked the accuracy of the above approximations

through numerical simulations of the system of recurrence

eqn 2. The results of the simulation and the approximation

were largely consistent. In particular, the approximation

gives an accurate quantitative prediction of the level of local

adaptation (Fig. 3).

The combination of simulations, approximations and

stability analysis leads to the distinction of four different

coevolutionary outcomes depending on both species’

migration rates, parasite virulence and parasite specificity

(Fig. 3A). In the absence of fluctuation of gene frequencies

within populations, neither of the species is locally adapted

(zone 1). When the gene frequencies do fluctuate, some

yt 

PH mm >  

xt 

Parasite 

local adaptation 

Host 

local adaptation 

No  

local adaptation 

yt 

xt xt 

yt 

PH mm = PH mm <  

Figure 2 A geometric view of local adaptation. The black area

(first and third quadrants) indicates the portion of the limit cycle

where parasites are locally adapted. The white area (second and

fourth quadrants) indicates the portion where hosts are locally

adapted.
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Figure 3 Host and parasite local adaptation as a function of host and parasite migration rates. In A, the results are obtained using the

recurrence eqns 2, with randomly chosen initial gene frequencies and average levels of local adaptation between generations 1000 and 1500.

In B, I approximated the level of local adaptation given by eqns 8 and 9. In the black area (zone 2) the parasite is locally adapted (�DD > 0.02).

In the white area (zone 3) the host is locally adapted (�DD < –0.02). The grey area (zones 1 and 4) represents weak or absent local adaptation

(–0.02 < �DD < 0.02). The dashed line (between zones 1 and 4) shows the threshold values of host and parasite migration rates above which

there are no fluctuations in gene frequencies. V ¼ 1 and S ¼ 1.
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local adaptation may occur. If parasites migrate more than

their hosts, they tend to be locally adapted (zone 2) while the

reverse is true when hosts migrate more than parasites (zone

3). Finally, when the host and the parasite have similar or

large migration rates, neither species is locally adapted (zone

4). The above description leads to a useful distinction

between zone 1 and zone 4, where a single pattern (the

absence of local adaptation) can be caused by different

processes.

Some differences between approximation and simulation

results can be pointed out. For example, the approximated

solution given by eqn 8 indicates that the sign of the average

level of local adaptation only depends on the difference

between host and parasite migration rates. Figure 4(A),

however, shows that intermediate levels of virulence can

lead to parasite local adaptation even when the host migrates

more than its parasite. This effect can be explained by a

selection asymmetry. When virulence decreases, the strength

of selection becomes higher on the parasite because the cost

for the parasite of an unsuccessful infection is higher than

the cost for the host of becoming infected (a host–parasite

version of the classical ‘‘life–dinner’’ asymmetry of pred-

ator–prey models). Therefore, even when the evolutionary

potentials of the two species are equal (i.e. equal migration

rates), the parasite may be locally adapted because of more

intense selection on parasite populations. Note that this

prediction only holds for relatively high values of virulence.

Indeed, when virulence becomes very low, the decreased

amplitude of the oscillations of gene frequencies may result

in no local adaptation. Indeed, Fig. 4 A shows that, for low

virulence values (i.e. V < 0.4) and whatever the bias in

migration rates, a decrease in parasite virulence always leads

to a reduction of local adaptation.

In contrast, a drop in parasite specificity induces a

selection asymmetry in the opposite direction. When

specificity decreases, the strength of selection becomes

greater on the host than on the parasite population.

Figure 4(B) shows that this may lead towards host local

adaptation even if the parasite migrates more than its host.

As for low virulence, low specificity always leads to very low

levels of local adaptation.

Coevolutionary asynchrony

The above analysis (both approximations and numerical

simulations of the recurrence eqns 2) relies on the

assumption that the coevolutionary dynamics are asynchro-

nous among populations (see Appendix A). This asynchrony

has important implications for local adaptation, because

under a synchronized regime of coevolution, the spatial

variation of gene frequencies will vanish and, consequently,

the local adaptation of both species will also disappear.

As pointed out by Nuismer et al. 2000) and

Gomulkiewicz et al. (2000), genetic differentiation among

populations could be produced by spatial variation in the

strength and/or the type of selection (from antagonistic to

mutualistic coevolution). Asynchrony and genetic differen-

tiation, however, may be difficult to maintain in the spatially

homogeneous model studied here (i.e. no variations in V and S

among populations). In a fully deterministic model with no

isolation by distance (i.e. island model of dispersal), host and

parasite migration will tend to homogenize the spatial

distribution of gene frequencies leading ultimately to

coevolutionary synchrony. However, even if asynchrony

cannot be maintained in the long term, the description of

the pattern of adaptation before reaching coevolutionary

synchrony (which may take a long time) may be of interest

in itself. Numerical simulations (Fig. 5A) indicate that the

analysis provided in this paper gives a good qualitative

description of local adaptation in such a transitory phase (i.e.

parasites are locally adapted during this transitory phase, as

expected, since mp > mh).

Asynchrony can only be maintained in the long term if

other forces act against the homogenizing effect of

migration. In particular, genetic drift may decouple the

dynamics of the different populations and counteract the

Parasite virulence, V 

Parasite local 

adaptation, 

Parasite specificity, S 

0 0.5 1
-0.1

-0.05

0

0.05

0.1

0 0.5 1

  A  B 

∆

Figure 4 Parasite local adaptation as a func-

tion of (A) parasite virulence, V (with S ¼ 1),

and (B) parasite specificity, S (with V ¼ 1).

The results are obtained using numerical si-

mulations of the recurrence eqns 2, with

randomly chosen initial gene frequencies and

average levels of local adaptation between

generations 1000 and 5000. Three different

migration cases are considered (from top to

bottom): (1) mH ¼ 10–4, mP ¼ 10–2 (black

dots), (2) mH ¼ mP ¼ 10–2 (grey dots) and (3)

mH ¼ 10–2, mP ¼ 10–4 (white dots).
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effect of migration. Figure 5(B) shows how finite popula-

tion sizes may allow asynchrony to be maintained. It is

worth pointing out that genetic drift is classically viewed as a

factor decreasing the level of local adaptation (Lande 1976).

In contrast, in the present coevolutionary model, genetic

drift can be a necessary condition for local adaptation

because it maintains spatial variations among populations.

Isolation by distance may be another way to decouple the

coevolutionary dynamics among populations that are far

apart. This factor, alone (i.e. without genetic drift) could

maintain some spatial variation among populations. Locali-

zed dispersal, however, generates spatial autocorrelation,

since nearby populations tend to have similar gene frequen-

cies. In two dimensions, the coevolutionary interaction can

spontaneously gives rise to rotating spiral patterns (Fig. 6),

where each spiral consists of two arms that differ in their

gene frequencies. Spiral waves have been found in several

population dynamics models (Hassell et al. 1991; Boerlijst

et al. 1993) but, to my knowledge, such spatial patterns have

never been described before in coevolutionary models.

Whatever the mechanism allowing the maintenance of

spatial asynchrony (genetic drift, isolation by distance), it is

important to note that the approximation derived in this

paper provides an accurate description of the emerging

pattern of local adaptation. Indeed, in both Figs 5(B) and 6,

the average level of local adaptation is positive, as expected

from eqn 8, since we used mp > mh for these simulations.

D I S C U S S I O N

Metapopulation dynamics can strongly affect the ecological

and the evolutionary processes involved in host–parasite

interactions (Burdon et al. 1990; Frank 1991a, b, 1997;

Thompson & Burdon 1992; Thompson 1994, 1999; Burdon

& Thrall 1999). Recognition of the role of spatial structure
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Figure 5 Genetic drift and coevolutionary asynchrony. Local adaptation (averaged over 50 coevolving populations) is plotted against time. At

t ¼ 0, each population is seeded with 100 hosts and 100 parasites, which are randomly chosen among the two different types. In (A) we

assume that there is no genetic drift (i.e. host and parasite population sizes are assumed to be infinite for t > 0). In (B) host and parasite

population are finite (100 parasites and 100 hosts in each population) and genetic drift maintains both coevolutionary asynchrony among

populations and the pattern of local adaptation. Parameter values: mP ¼ 10–1, mH ¼ 10–3, V ¼ S ¼ 0.8.
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Figure 6 Typical spatial distribution of host gene frequencies (the

darker the grey, the higher the H1 allele frequency) in a two-

dimensional habitat (similar spatial patterns emerge for the para-

site). The habitat consists of 20 · 20 populations arranged in a

torus where both host and parasite are allowed to disperse in the

four nearest neighbouring populations. At t ¼ 0, each population is

seeded with 100 hosts and 100 parasites, which are randomly

chosen from among the two different types. We assume that there

is no genetic drift for t > 0. The parameter values used in these

simulations (mP ¼ 10–1, mH ¼ 10–3, V ¼ S ¼ 0.8) led to parasite

local adaptation: �DD ¼ 0.042 (spatial average over the last 1000

generations of a 1500 generation simulation).
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in coevolutionary interactions led to the study of (often

complex and stochastic) simulation models (Frank 1991a,

1991b, 1997; Gandon et al. 1996; Lively 1999). These

models are useful to explore the effects of some parameters

but they do not allow detailed analyses of the processes

involved. Here, I obtain insights into some metapopulation

properties of host–parasite systems (particularly the level of

local adaptation) from the analysis of the local dynamics of

gene frequencies.

Migration rates and local adaptation

The above analysis confirms that the difference between

host and parasite migration rates can strongly affect the level

of local adaptation (Gandon et al. 1996). Here, I provide an

analytic formulation of this result. The formulation shows

that migration rates may act on the level of local adaptation

by either acting on the amplitude of the gene frequency

oscillations or on the phase difference between the

trajectories of host and parasite gene frequencies. Only

the effect of migration on the phase difference may shift the

level of local adaptation from one species to another. Equal

migration rates yield / ¼ p / 2. Biased migration rates,

however, allow the species with the higher migration rate to

evolve faster. The departure, d, from the situation where /
¼ p / 2 can be viewed as a measure of the relative speed of

the coevolutionary opponents. If d > 0 (d < 0) the parasite

(the host) is ahead in the coevolutionary race.

Parasite virulence and local adaptation

Similarly, parasite virulence may affect local adaptation

through an effect on either the amplitude of the gene

frequency oscillations or on the phase difference. In contrast

to the effect of migration rates, a change in virulence

quantitatively affects the level of local adaptation without, in

general, altering the qualitative pattern of adaptation

(parasite or host local adaptation). Two main results are

obtained. First, the parameter space where local adaptation

may occur expands with higher parasite virulence (Fig. 1).

Second, high virulence tends to promote local adaptation of

the species that is already ahead in the coevolutionary race

(i.e. the species with a higher migration rate, see Fig. 4).

Note, however, that intermediate virulence induces an

asymmetry in the strength of selection on the two

coevolving species which biases the predictions (eqn 8)

towards parasite local adaptation (see Fig. 4A).

Lively (1999) studied the effect of parasite virulence on

the coevolutionary outcome of a very similar model.

However, he assumed that the habitat consisted of two

populations and that only the parasites could migrate

between these populations. Under these assumptions, Lively

(1999) showed that parasite virulence always increased

parasite local adaptation. The present model extends the

results of Lively to the case where hosts may also migrate

between populations and shows that when the host

migration rate is higher than the parasite migration rate,

parasite virulence may also increase the level of host local

adaptation (Fig. 4A).

Parasite specificity and local adaptation

Like parasite virulence, specificity is a necessary condition

for coevolutionary dynamics. When specificity is very low

any pattern of local adaptation vanishes. Higher specificity

tends to promote local adaptation of the species that is

already ahead in the coevolutionary race (Fig. 4B) but, in

contrast with the effect of virulence, intermediate levels of

specificity increase the strength of selection on the host

population. Therefore, imperfect specificity (S < 1) may

distort the predictions (eqn 8) towards host local adaptation.

Interestingly, Kawecki (1998) showed that such a cost of

low specificity on parasite adaptation may actually drive the

evolution of more specialized parasites. Using a similar

argument, the cost of high virulence on parasite adaptation

that was identified above may favour lower virulence in the

parasite population. However, the analysis of virulence

evolution in a non-equilibrium coevolutionary context

remains to be done.

It would also be interesting to extend the present analysis

to other forms of specificity. The symmetry of the matching

model assumed here is mathematically convenient but

several authors have discussed the relevance of this form of

specificity (Frank 1994, 1996; Parker 1994, 1996). In

particular, Parker (1994) pointed out that the asymmetrical

gene-for-gene (GFG) model originally proposed by Flor

(1956) can prevent the occurrence of coevolutionary cycles

and, consequently, may decrease the selection for sexual

recombination (Parker 1994). More recently, Agrawal &

Lively, 2002) studied a general model which allows the GFG

of Flor (1956) and the matching allele model used here to

appear as two extreme cases (two ends of a continuum). The

analysis of this model showed that ‘‘the highly dynamical

aspects of the matching-allele model were observed across

most of the continuum’’ (Agrawal & Lively, 2002). This

result suggests that the conclusions reached in the present

paper may also apply across most of the continuum. The

effects of the genetic basis of the infection, however, remain

to be explored to check the generality of our predictions.

Evolutionary potential evolution

The present analysis yields a geometrical visualization of the

results. This geometrical view has heuristic value because it

describes accurately the effects of migration rates on the

level of local adaptation (compare Figs 3 and 4). This result
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had first been pointed out by Nee (1989), in a study of the

effect of host and parasite mutation and recombination rates

on coevolutionary dynamics. Mutation, recombination and

migration rates, the main components of the evolutionary

potential of a species, may indeed be viewed as alternative

strategies in the face of a temporally variable environment

(Hamilton 1980; Hamilton et al. 1990; Gandon et al. 1998).

In such environments, it pays to evolve genotypic random-

ization mechanisms since randomization may increase the

genetic variance and, consequently, the potential for

adaptation to these variable environmental conditions.

The study of the coevolution among these alternative

strategies remains to be carried out. One may expect a

strong interaction among these strategies. For example,

high migration rates may prevent the evolution of sexual

reproduction (Ladle et al. 1993; Gandon et al. 1998).

Coevolution among these traits may also occur between

species. Haraguchi & Sasaki (1996) studied the coevolu-

tion of host and parasite mutation rates engaged in a

gene-for-gene type of interaction. They showed that a

typical coevolutionary outcome is that the parasite evolves

high mutation rates while the host mutation rate is driven

to zero. This result can be explained by a classical

asymmetry in such interspecific interactions (the ‘‘life–

dinner’’ principle in predator–prey interactions). As

pointed out by Haraguchi & Sasaki, ‘‘the parasite mutates

more frequently than the host, because the parasite is

mutating for his life while the host is only mutating for

his health’’. It would be interesting to verify whether this

principle holds for other traits such as recombination or

migration rates. Ultimately, the analysis of the ‘‘full

model’’ (including coevolution of these different strategies

in both the host and the parasite) may predict which

randomization strategies (mutation, recombination or

migration) are most likely to evolve.
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APPENDIX A

Derivation of the recurrence equations

Let the frequency of H1 and H2 be p and (1 – p),

respectively, in a focal population. The frequencies of P1

and P2 are q and (1 – q). The fitnesses of the different alleles

are:

WH1
¼ qð1ÿV Þ þ ð1ÿ qÞS þ ð1ÿ qÞð1ÿ S Þð1ÿV Þ

WH2
¼ ð1ÿ qÞð1ÿV Þ þ qS þ qð1ÿ SÞð1ÿV Þ

WP1
¼ pþ ð1ÿ SÞð1ÿ PÞ

WP2
¼ 1ÿ pþ ð1ÿ S Þp ðA1Þ

After selection and before migration the allele frequencies

become:

p0 ¼ pWH1

pWH1
þ ð1ÿ pÞWH2

¼ pW H1

q0 ¼ qWP1

qWP1
þ ð1ÿ qÞWP2

¼ qW P1

ðA2Þ

After migration the allele frequencies become:

p00 ¼ p0ð1ÿ mH Þ þ mH �pp 0

q00 ¼ q0ð1ÿ mPÞ þ mP �qq0
ðA3Þ

where �pp 0 and �qq 0 are, respectively, the average host and

parasite gene frequencies (over the metapopulation). I

further simplify the above recurrence equation by assuming

asynchronous coevolutionary dynamics among the different

populations which yields �pp 0 ¼ �qq 0 ¼ 0:5 (see further expla-

nations in the main text) and

p00 ¼ p0ð1ÿ mH Þ þ mH=2

q00 ¼ q0ð1ÿ mPÞ þ mP=2
ðA4Þ

Following Nee (1989) I make the following substitutions:

p ¼ x þ 1=2

q ¼ y þ 1=2
ðA5Þ

This yields the system of recurrence eqns 2 given in the

main text.

APPENDIX B

Local stability analysis

The point x ¼ y ¼ 0 is a trivial equilibrium of eqns 2. The

stability of this equilibrium can be checked through the

analysis of the Jacobian matrix, J, of the above system

evaluated at x ¼ y ¼ 0:

J¼ 1ÿmH ð1ÿmH ÞSV =ðV ð2ÿ SÞÿ 2Þ
ð1ÿmPÞS=ð2ÿ SÞ 1ÿmP

� �
ðB1Þ

A necessary and sufficient condition for the stability of the

equilibrium is:

2 > 1þD > T

254 S. Gandon

Ó2002 Blackwell Science Ltd/CNRS



where

D ¼ ð1ÿ mH Þð1ÿ mPÞ
4ð1ÿ S Þð1ÿV Þ þ 2S

ð2ÿV ð2ÿ S ÞÞð2ÿ SÞ
T ¼ 2ÿ mH ÿ mP

ðB2Þ

are the determinant and the trace, respectively, of J. This

yields the local stability condition 3 given in the main text

and the following two threshold values of host and parasite

migration rates:

m�H ¼ 1ÿ ð2ÿV ð2ÿ SÞÞð2ÿ S Þ
ð1ÿ mPÞð4ð1ÿV Þð1ÿ S Þ þ 2S Þ

m�P ¼ 1ÿ ð2ÿV ð2ÿ SÞÞð2ÿ S Þ
ð1ÿ mH Þð4ð1ÿV Þð1ÿ S Þ þ 2S Þ

ðB3Þ

A P P E N D I X C

Approximation of the phase difference

When the dynamics of allele frequencies remain close to the

equilibrium point x ¼ y ¼ 0 the linearization of the recur-

rence equations given in eqns 2 yields:

xtþ1 ¼
ð1ÿ mH Þð2xtð1ÿV Þ þ SV ðxt ÿ ytÞÞ

2ð1ÿV Þ þ SV

ytþ1 ¼
ð1ÿ mPÞð2yt þ S ðxt ÿ ytÞÞ

2ÿ S

ðC1Þ

Following the derivation of Nee (1989) the phase difference

between hosts and parasites is (see A12 in Nee 1989):

/ ¼ bÿ a ðC2Þ
with

a ¼ arctan
sinðw1 ÿ w2Þ

cosðw1 ÿ w2Þ ÿ r1=r2

� �
b ¼ arctan

sinðw1 ÿ w2Þ
r2=r1 ÿ cosðw1 ÿ w2Þ

� � ðC3Þ

where {r1, r2} and {w1, w2} are the modulus and

arguments, respectively, of the coordinates of the eigenvec-

tors associated with the complex conjugate eigenvalues of J

(see A10 in Nee 1989). After some rearrangements this yields:

/ ¼ w1 ÿ w2 ðC4Þ
It can be shown that:

cosðw1ÿw2Þ

¼ mPÿmH

2S
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V ð1ÿmPÞð1ÿmH Þ=ðð2ÿS Þð2ÿSÞð2ð1ÿV ÞþSV ÞÞ

p
ðC5Þ

yielding eqn 5 given in the main text.
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