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PARASITE VIRULENCE EVOLUTION IN A HETEROGENEOUS HOST POPULATION 

1. Derivation of evolutionarily stable virulence 

The dynamics of a resident and a mutant parasite (the asterisk refers to the mutant strain) 

competing in a heterogeneous host population with two types of hosts (the prime refers to 

resistant hosts) is given by (see main text and Fig. 4 for details): 
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 **** yyyy ′′++′′++= ααααδλ . 

The direction of evolution and, ultimately the evolutionarily stable (ES) virulence, can be 

derived from the analysis of the fate of a rare mutant. When the mutant is rare we can neglect 

its effect on the resident dynamics and focus on its own dynamics which, in matrix form, is 

given by1:  
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where yxN σ+=  and ( )( )yxrN ′+′−=′ σ11 .  There are several ways to find the ES 

parasite virulence from this model.  One is to maximise ε , the dominant eigenvalue of *A , 

which is the standard measure of fitness for a rare mutant (the rate of invasion when the 

resident population has reached an equilibrium)2.  It is known that, in populations at 

demographic equilibrium, correct results can also be obtained by maximising the basic 

reproductive ratio of the mutant strategy, given by equation 7 in the text2. 

2. Reproductive values and the strength of selection in different hosts 

These maximisations must be carried out numerically.  As both a check on the numerical 

calculations, and as a means of gaining insight into their results, a further approach is useful.  

Maximising the dominant eigenvalue of A* is equivalent to maximising the following function: 

  w α* ,α[ ]= v ⋅A ⋅u 

where v  and u  are the left and right eigenvectors of A  (which is the same as A*, but with 

the resident's parameters): 
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These two eigenvectors are, respectively, the individual reproductive values and the 

frequencies of the two classes of resident parasite infections (i.e. the infections of susceptible 

or resistant hosts).  The product of these two quantities gives the class reproductive values3 

of the two types of parasites.  This analysis of reproductive values is particularly insightful 

since it provides the appropriate fitness weights associated with the selective forces acting in 

the different types of hosts. 

For instance, the non-monotonic effect of the efficacy, 2r , of the anti-growth rate vaccine on 

the ES virulence (Fig. 2a) can be explained with the help of class reproductive values of 

parasites infecting different types of hosts.  Note that the reproductive value of parasites in 

vaccinated hosts is proportional to ( )[ ]αβ 21 r− .  When 2r  is low, individual reproductive 
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values are very similar and the direction of evolution at the scale of the whole host population 

(with both susceptible and vaccinated hosts) is mainly governed by the relative frequencies of 

the two classes of parasite infections.  In this situation, since an increase in vaccine efficacy 

selects for higher virulence in vaccinated hosts (equations 4 and 5), this yields an increase in 

the ES virulence.  However, when 2r  is high, the reproductive value of parasites infecting 

vaccinated hosts can be very low (when 12 →r , 0→′β ).  This means that, for very efficient 

vaccines, parasites infecting vaccinated hosts do not contribute to the future of the parasite 

population.  Even though selection for increased virulence is very strong in those hosts, the 

selective pressures acting in susceptible hosts drive the evolution of the parasite.  This 

explains the drop in ES virulence as 12 →r . 
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MALARIA MODEL 

Here we describe (1) the epidemiological model for malaria under vaccination, allowing for 

natural immunity and vector transmission, (2) the evolutionary dynamics of a virulence 

mutant, and (3) the derivation of the evolutionarily stable virulence.  

1. Epidemiology 

We assume there are three types of hosts - naïve, naturally immune and vaccinated, denoted 

by subscripts N, I and V, respectively - which are infected by a single (resident) strain of 

parasite.  Hosts slowly acquire natural immunity through repeated infections and do not lose 

this immunity once acquired.  This natural immunity comprises all four types and is imperfect, 

i.e. less than 100% effective.  Vaccination with a single vaccine type is assumed to 

immediately confer the same level of immunity as natural immunity, but only for the type of 

immunity stimulated by the vaccine.  We further assume that the dynamics of the infection 

processes of the vector happen on a relatively fast time scale, so that the vector dynamics 

are captured in the equilibrium fraction of infected mosquitoes4,5.  Finally, we assume 

constant host population size yielding the following dynamical equations, with variables and 

parameters described below: 
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Note that, as in equation 6 in the main text, there are no superinfection terms because they 

cancel out. 

1.1. Variables 

VIN xxx ,,  : proportions of uninfected hosts  
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VIN yyy ,,  : proportions of infected hosts  

VIN ααα ,,  : parasite virulence where NI αρρα )1)(1( 42 −−=  and 

NV rr αα )1)(1( 42 −−=  

VIN βββ ,,  : parasite transmission probabilities (infectivity from infected humans to 

uninfected mosquitoes) where ][ NN αββ =  (see below), 

[ ]II αβρβ )1( 3−=  and [ ]VV r αββ )1( 3−=  

VIN hhh ,,  : forces of infection where zabmhN ˆ= , NI hh )1( 1ρ−=  and NV hrh )1( 1−=  

ẑ  : equilibrium proportion of infectious mosquitoes, given by 
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λ  : growth/immigration rate of the host population, given by 

VVIINN yyy αααδλ +++=  

1.2. Parameters (assumed values in parentheses based on endemic malaria in a high 

transmission area6-10 with rates given on an annual basis) 

4321 ,,, ρρρρ  : resistance of naturally immune hosts (0.8) 

4321 ,,, rrrr  : vaccine efficacy for different types of vaccines (0.8).  We note that this is 

substantially higher than most current candidate vaccines. 

VIN χχχ ,,  : recovery rates where 1== VN χχ , 7=Iχ . 

f  : vaccination coverage (0 to 1) 

φ  : fraction of the recovering individuals that become naturally immune (0.03) 
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δ  : natural host death rate (0.02) 

a : biting rate on humans by a single mosquito (120) 

b : infectivity of infected mosquitoes (0.1) 

m : number of female mosquitoes per human host (5) 

μ : mortality rate of the mosquito (infected or not) (50) 

τ : latent period in the mosquito (0.04) 

σ : susceptibility to superinfection relative to an uninfected host (0.1).  

Competitive suppression can occur in malaria11 and superinfection events 

have been directly observed in the field12,13. 

2. Invasion dynamics of a mutant 

The invasion dynamics of a virulent mutant can be described by the following system of 

differential equations: 
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As we assume that the dynamics of the infection processes of the vector happen on a 

relatively fast time scale, the equilibrium fractions of infected mosquitoes with the resident 

strain or with the mutant strain are:  
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The above system of equations can be used to follow the invasion of the parasite population 

by a virulence mutant after the start of a vaccination campaign (Fig. 5). 

3. Derivation of evolutionarily stable virulence 

As in the simpler model presented earlier, the long-term evolutionary outcome of the parasite 

population (the evolutionarily stable virulence) can be derived from the analysis of the 

invasion of a rare mutant when the resident strategy settles at an epidemiological equilibrium. 

The dynamics of a rare mutant strain appearing in a population of the resident parasite can 

be put in matrix form: 
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where the hat indicates the equilibrium densities of resident hosts. 

( ) ( )*************
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μ
μτ ++=++= −  is the force of infection 

of the mutant on naïve hosts (with μμτ−= ebmac 2 ) and ( ) *
1

* 1 NI hh ρ−=  and 

( ) *
1

* 1 NV hrh −=  are the forces of infection of the mutant on immune and vaccinated hosts. 

Note that we can neglect the terms in *y  in the denominator of *ẑ  because the mutant is 

assumed to be rare. 

Analysis proceeds as with the general model yielding the following expression for the fitness 

of the virulence mutant: 
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We present a numerical example (Fig. 3) with only a trade-off between virulence and 

transmission given by: 
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However, adding a trade-off between virulence and recovery does not qualitatively affect our 

conclusions.  The choice of the particular shape of the trade-off that we used was based on 

the assumption that observed levels of malaria mortality in non-immune individual5 in 

endemic areas14,15 are at the parasite’s ES virulence ( 015.0≈Nα ).  There are, however, 

many different trade-off functions which may yield realistic values of the ES virulence. 

Our model yields the following values for other relevant variables before vaccination: 

5.3=Nh , 83.0=Nβ , 14.0=Iβ  and the fraction of infected hosts that die due to malaria 

as 1.4% and 0.04% in naïve and naturally immune hosts, respectively14. 
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